Nous définissons faible, une généralisation de sur les domaines bornés dans une variété de Stein qui suffit à prouver que l’image de est fermée. Sous l’hypothèse d’une faible, nous montrons également que (i) les -formes harmoniques sont triviales et (ii) si satisfait une faible et une faible, alors a une image fermée sur les -formes sur . Nous fournissons des exemples pour montrer que notre condition contient des exemples qui sont exclus de la -pseudoconvexité et la notion précédente des auteurs de faible.
We define weak , a generalization of on bounded domains in a Stein manifold that suffices to prove closed range of . Under the hypothesis of weak , we also show (i) that harmonic -forms are trivial and (ii) if satisfies weak and weak , then has closed range on -forms on . We provide examples to show that our condition contains examples that are excluded from -pseudoconvexity and the authors’ previous notion of weak .
@article{AIF_2015__65_4_1711_0, author = {Harrington, Phillip S. and Raich, Andrew S.}, title = {Closed Range for $\bar{\partial }$ and $\bar{\partial }\_b$ on Bounded Hypersurfaces in Stein Manifolds}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1711-1754}, doi = {10.5802/aif.2972}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1711_0} }
Harrington, Phillip S.; Raich, Andrew S. Closed Range for $\bar{\partial }$ and $\bar{\partial }_b$ on Bounded Hypersurfaces in Stein Manifolds. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1711-1754. doi : 10.5802/aif.2972. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1711_0/
[1] Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Tome 90 (1962), pp. 193-259 | Numdam | MR 150342 | Zbl 0106.05501
[2] E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3), Tome 26 (1972), pp. 325-363 | Numdam | MR 460725 | Zbl 0256.32007
[3] Problème de Levi pour les classes de cohomologie, C. R. Acad. Sci. Paris, Tome 258 (1964), pp. 778-781 | MR 159960 | Zbl 0124.38803
[4] Local solvability of the -equation with boundary regularity on weakly -convex domains, Math. Ann., Tome 334 (2006) no. 1, pp. 143-152 | Article | MR 2208952 | Zbl 1156.32303
[5] Partial differential equations in several complex variables, American Mathematical Society, Providence, RI; International Press, Boston, MA, AMS/IP Studies in Advanced Mathematics, Tome 19 (2001), pp. xii+380 | MR 1800297 | Zbl 0963.32001
[6] Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., Tome 55 (1980) no. 3, pp. 413-426 | Article | MR 593056 | Zbl 0464.32010
[7] The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1972), pp. viii+146 (Annals of Mathematics Studies, No. 75) | MR 461588 | Zbl 0247.35093
[8] Sobolev estimates for the Cauchy-Riemann complex on pseudoconvex domains, Math. Z., Tome 262 (2009) no. 1, pp. 199-217 | Article | MR 2491606 | Zbl 1165.32020
[9] Regularity results for on CR-manifolds of hypersurface type, Comm. Partial Differential Equations, Tome 36 (2011) no. 1, pp. 134-161 | Article | MR 2763350 | Zbl 1216.32025
[10] On boundaries of complex analytic varieties. I, Ann. of Math. (2), Tome 102 (1975) no. 2, pp. 223-290 | Article | MR 425173 | Zbl 0317.32017
[11] Global integral formulas for solving the -equation on Stein manifolds, Ann. Polon. Math., Tome 39 (1981), pp. 93-116 | MR 617453 | Zbl 0477.32020
[12] -problem on weakly -convex domains, Math. Ann., Tome 290 (1991) no. 1, pp. 3-18 | Article | MR 1107660 | Zbl 0714.32006
[13] estimates and existence theorems for the operator, Acta Math., Tome 113 (1965), pp. 89-152 | Article | MR 179443 | Zbl 0158.11002
[14] An introduction to complex analysis in several variables, North-Holland Publishing Co., Amsterdam, North-Holland Mathematical Library, Tome 7 (1990), pp. xii+254 | MR 1045639 | Zbl 0271.32001
[15] The null space of the -Neumann operator, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 5, p. 1305-1369, xiv, xx | Article | Numdam | MR 2127850 | Zbl 1083.32033
[16] Distance to hypersurfaces, J. Differential Equations, Tome 40 (1981) no. 1, pp. 116-120 | Article | MR 614221 | Zbl 0431.57009
[17] Transformation de Bochner-Martinelli dans une variété de Stein, Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Springer, Berlin (Lecture Notes in Math.) Tome 1295 (1987), pp. 96-131 | MR 1047723 | Zbl 0691.32003
[18] Global regularity for on weakly pseudoconvex CR manifolds, Adv. Math., Tome 199 (2006) no. 2, pp. 356-447 | Article | MR 2189215 | Zbl 1091.32017
[19] Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., Tome 348 (2010) no. 1, pp. 81-117 | Article | MR 2657435 | Zbl 1238.32032
[20] Global solvability and regularity for on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc., Tome 291 (1985) no. 1, pp. 255-267 | MR 797058 | Zbl 0594.35010
[21] -estimates and existence theorems for the tangential Cauchy-Riemann complex, Invent. Math., Tome 82 (1985) no. 1, pp. 133-150 | Article | MR 808113 | Zbl 0581.35057
[22] estimates and existence theorems for on Lipschitz boundaries, Math. Z., Tome 244 (2003) no. 1, pp. 91-123 | Article | MR 1981878 | Zbl 1039.32049
[23] The closed range property for on domains with pseudoconcave boundary, Complex analysis, Birkhäuser/Springer Basel AG, Basel (Trends Math.) (2010), pp. 307-320 | MR 2885124 | Zbl 1204.32028
[24] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Tome 17 (1982) no. 1, pp. 55-138 | MR 658472 | Zbl 0497.32025
[25] Lectures on the -Sobolev theory of the -Neumann problem, European Mathematical Society (EMS), Zürich, ESI Lectures in Mathematics and Physics (2010), pp. viii+206 | MR 2603659 | Zbl 1247.32003
[26] The complex Green operator on CR-submanifolds of of hypersurface type: compactness, Trans. Amer. Math. Soc., Tome 364 (2012) no. 8, pp. 4107-4125 | Article | MR 2912447 | Zbl 1278.32027
[27] Complex analysis and CR geometry, American Mathematical Society, Providence, RI, University Lecture Series, Tome 43 (2008), pp. viii+200 | MR 2400390 | Zbl 1160.32001