Balancing conditions in global tropical geometry
[Conditions d’équilibre en géométrie tropicale globale]
Yu, Tony Yue
Annales de l'Institut Fourier, Tome 65 (2015), p. 1647-1667 / Harvested from Numdam

Nous étudions la géométrie tropicale dans le cadre global en utilisant la rétraction par déformation construite par V. Berkovich. Nous montrons les conditions d’équilibre généralisées dans ce cadre. À partir d’un schéma formel strictement semi-stable, nous calculons certains faisceaux de cycles évanescents par la cohomologie étale analytique, puis nous interprétons les vecteurs de poids tropical via ces cycles. Nous obtenons la condition d’équilibre pour les courbes tropicales sur le squelette associé au schéma formel en fonction de la théorie d’intersection sur la fibre spéciale. Notre approche fonctionne pour tout corps complet de valuation discrète.

We study tropical geometry in the global setting using Berkovich’s deformation retraction. We state and prove the generalized balancing conditions in this setting. Starting with a strictly semi-stable formal scheme, we calculate certain sheaves of vanishing cycles using analytic étale cohomology, then we interpret the tropical weight vectors via these cycles. We obtain the balancing condition for tropical curves on the skeleton associated to the formal scheme in terms of the intersection theory on the special fiber. Our approach works over any complete discrete valuation field.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2970
Classification:  14T05,  14G22
Mots clés: condition d’équilibre, courbe tropicale, espace de Berkovich, cycle évanescent
@article{AIF_2015__65_4_1647_0,
     author = {Yu, Tony Yue},
     title = {Balancing conditions in global tropical geometry},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {1647-1667},
     doi = {10.5802/aif.2970},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1647_0}
}
Yu, Tony Yue. Balancing conditions in global tropical geometry. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1647-1667. doi : 10.5802/aif.2970. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1647_0/

[1] Atiyah, M. F. On analytic surfaces with double points, Proc. Roy. Soc. London. Ser. A, Tome 247 (1958), pp. 237-244 | Article | MR 95974 | Zbl 0135.21301

[2] Baker, Matthew; Payne, Sam; Rabinoff, Joseph Nonarchimedean geometry, tropicalization, and metrics on curves (2011) (http://arxiv.org/abs/1104.0320)

[3] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 33 (1990), pp. x+169 | MR 1070709 | Zbl 0715.14013

[4] Berkovich, Vladimir G. Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993) no. 78, p. 5-161 (1994) | Article | Numdam | MR 1259429 | Zbl 0804.32019

[5] Berkovich, Vladimir G. Vanishing cycles for formal schemes, Invent. Math., Tome 115 (1994) no. 3, pp. 539-571 | Article | MR 1262943 | Zbl 0791.14008

[6] Berkovich, Vladimir G. Vanishing cycles for formal schemes. II, Invent. Math., Tome 125 (1996) no. 2, pp. 367-390 | Article | MR 1395723 | Zbl 0852.14002

[7] Berkovich, Vladimir G. Smooth p-adic analytic spaces are locally contractible, Invent. Math., Tome 137 (1999) no. 1, pp. 1-84 | Article | MR 1702143 | Zbl 0930.32016

[8] Boucksom, Sébastien; Favre, Charles; Jonsson, Mattias Singular semipositive metrics in non-archimedean geometry (2011) (http://arxiv.org/abs/1201.0187)

[9] Dat, Jean-François A lemma on nearby cycles and its application to the tame Lubin-Tate space, Math. Res. Lett., Tome 19 (2012) no. 1, pp. 165-173 | Article | MR 2923183 | Zbl 1281.11099

[10] Ducros, Antoine La structure des courbes analytiques (En cours de rédaction, date du 15/11/2012)

[11] Einsiedler, Manfred; Kapranov, Mikhail; Lind, Douglas Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., Tome 601 (2006), pp. 139-157 | Article | MR 2289207 | Zbl 1115.14051

[12] Grothendieck, Alexander Groupes de monodromie en géométrie algébrique. II, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Vol. 340 (1973), pp. x+438 (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz)

[13] Gubler, Walter A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 589 (2013), pp. 125-189 | Article | MR 3088913

[14] Gubler, Walter; Rabinoff, Joseph; Werner, Annette Skeletons and tropicalizations (2014) (http://arxiv.org/abs/1404.7044)

[15] Kontsevich, Maxim; Tschinkel, Yury Non-archimedean Kähler geometry (2002) (www.ihes.fr/~maxim/TEXTS/Non-archimedean Kahler geometry.pdf)

[16] Matsusaka, T. The criteria for algebraic equivalence and the torsion group, Amer. J. Math., Tome 79 (1957), pp. 53-66 | Article | MR 82730 | Zbl 0077.34303

[17] Mikhalkin, Grigory Enumerative tropical algebraic geometry in 2 , J. Amer. Math. Soc., Tome 18 (2005) no. 2, pp. 313-377 | Article | MR 2137980 | Zbl 1092.14068

[18] Nishinou, Takeo; Siebert, Bernd Toric degenerations of toric varieties and tropical curves, Duke Math. J., Tome 135 (2006) no. 1, pp. 1-51 | Article | MR 2259922 | Zbl 1105.14073

[19] Rapoport, M.; Zink, Th. Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math., Tome 68 (1982) no. 1, pp. 21-101 | Article | MR 666636 | Zbl 0498.14010

[20] Speyer, David E Uniformizing tropical curves I: genus zero and one (2007) (http://arxiv.org/abs/0711.2677)

[21] Yu, Tony Yue Gromov compactness in non-archimedean analytic geometry (2014) (http://arxiv.org/abs/1401.6452)