Nous démontrons un théorème de comparaison entre la transformation de Radon et la transformation de Fourier-Laplace pour les -modules. Ceci généralise des resultats de Brylinski et de d’Agnolo-Eastwood.
We prove a comparison theorem between the -plane Radon transform and the Fourier-Laplace transform for -modules. This generalizes results of Brylinski and d’Agnolo-Eastwood.
@article{AIF_2015__65_4_1577_0, author = {Reichelt, Thomas}, title = {A comparison theorem between Radon and Fourier-Laplace transforms for D-modules}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1577-1616}, doi = {10.5802/aif.2968}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1577_0} }
Reichelt, Thomas. A comparison theorem between Radon and Fourier-Laplace transforms for D-modules. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1577-1616. doi : 10.5802/aif.2968. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1577_0/
[1] Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque (1986) no. 140-141, p. 3-134, 251 (Géométrie et analyse microlocales) | MR 864073 | Zbl 0624.32009
[2] Sheaves and -modules in integral geometry, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 251 (2000), pp. 141-161 | MR 1771265 | Zbl 0965.53050
[3] Radon and Fourier transforms for -modules, Adv. Math., Tome 180 (2003) no. 2, pp. 452-485 | Article | MR 2020549 | Zbl 1051.32008
[4] Leray’s quantization of projective duality, Duke Math. J., Tome 84 (1996) no. 2, pp. 453-496 | Article | MR 1404336 | Zbl 0879.32011
[5] Radon-Penrose transform for -modules, J. Funct. Anal., Tome 139 (1996) no. 2, pp. 349-382 | Article | MR 1402769 | Zbl 0879.32012
[6] Cohomology and massless fields, Comm. Math. Phys., Tome 78 (1980/81) no. 3, pp. 305-351 | Article | MR 603497 | Zbl 0465.58031
[7] A duality in integral geometry on symmetric spaces, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo (1966), pp. 37-56 | MR 229191 | Zbl 0141.39105
[8] -modules, perverse sheaves, and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 236 (2008), pp. xii+407 (Translated from the 1995 Japanese edition by Takeuchi) | Article | MR 2357361 | Zbl 1136.14009
[9] Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. (1985) no. 62, pp. 361-418 | Numdam | MR 823177 | Zbl 0603.14015
[10] Transformation de Fourier géometrique, Astérisque (1988) no. 161-162, p. Exp. No. 692, 4, 133-150 (1989) (Séminaire Bourbaki, Vol. 1987/88) | Numdam | MR 992206 | Zbl 0687.35003
[11] Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.- Nat. Kl., Tome 69 (1917), pp. 262-277 | MR 692055
[12] Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., Tome 150 (2014) no. 6, pp. 911-941 | Article | MR 3223877