A comparison theorem between Radon and Fourier-Laplace transforms for D-modules
[Un théorème de comparaison entre la transformation de Radon et Fourier-Laplace pour les D-modules]
Reichelt, Thomas
Annales de l'Institut Fourier, Tome 65 (2015), p. 1577-1616 / Harvested from Numdam

Nous démontrons un théorème de comparaison entre la transformation de Radon et la transformation de Fourier-Laplace pour les D-modules. Ceci généralise des resultats de Brylinski et de d’Agnolo-Eastwood.

We prove a comparison theorem between the d-plane Radon transform and the Fourier-Laplace transform for D-modules. This generalizes results of Brylinski and d’Agnolo-Eastwood.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2968
Classification:  32C38
Mots clés: 𝒟-modules, transformation de Radon, transformation de Fourier-Laplace
@article{AIF_2015__65_4_1577_0,
     author = {Reichelt, Thomas},
     title = {A comparison theorem between Radon and Fourier-Laplace transforms for D-modules},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {1577-1616},
     doi = {10.5802/aif.2968},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1577_0}
}
Reichelt, Thomas. A comparison theorem between Radon and Fourier-Laplace transforms for D-modules. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1577-1616. doi : 10.5802/aif.2968. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1577_0/

[1] Brylinski, Jean-Luc Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque (1986) no. 140-141, p. 3-134, 251 (Géométrie et analyse microlocales) | MR 864073 | Zbl 0624.32009

[2] D’Agnolo, Andrea Sheaves and 𝒟-modules in integral geometry, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 251 (2000), pp. 141-161 | MR 1771265 | Zbl 0965.53050

[3] D’Agnolo, Andrea; Eastwood, Michael Radon and Fourier transforms for 𝒟-modules, Adv. Math., Tome 180 (2003) no. 2, pp. 452-485 | Article | MR 2020549 | Zbl 1051.32008

[4] D’Agnolo, Andrea; Schapira, Pierre Leray’s quantization of projective duality, Duke Math. J., Tome 84 (1996) no. 2, pp. 453-496 | Article | MR 1404336 | Zbl 0879.32011

[5] D’Agnolo, Andrea; Schapira, Pierre Radon-Penrose transform for 𝒟-modules, J. Funct. Anal., Tome 139 (1996) no. 2, pp. 349-382 | Article | MR 1402769 | Zbl 0879.32012

[6] Eastwood, Michael G.; Penrose, Roger; Wells, R. O. Jr. Cohomology and massless fields, Comm. Math. Phys., Tome 78 (1980/81) no. 3, pp. 305-351 | Article | MR 603497 | Zbl 0465.58031

[7] Helgason, Sigurður A duality in integral geometry on symmetric spaces, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo (1966), pp. 37-56 | MR 229191 | Zbl 0141.39105

[8] Hotta, Ryoshi; Takeuchi, Kiyoshi; Tanisaki, Toshiyuki 𝒟-modules, perverse sheaves, and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 236 (2008), pp. xii+407 (Translated from the 1995 Japanese edition by Takeuchi) | Article | MR 2357361 | Zbl 1136.14009

[9] Katz, Nicholas M.; Laumon, Gérard Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. (1985) no. 62, pp. 361-418 | Numdam | MR 823177 | Zbl 0603.14015

[10] Malgrange, Bernard Transformation de Fourier géometrique, Astérisque (1988) no. 161-162, p. Exp. No. 692, 4, 133-150 (1989) (Séminaire Bourbaki, Vol. 1987/88) | Numdam | MR 992206 | Zbl 0687.35003

[11] Radon, Johann Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.- Nat. Kl., Tome 69 (1917), pp. 262-277 | MR 692055

[12] Reichelt, Thomas Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., Tome 150 (2014) no. 6, pp. 911-941 | Article | MR 3223877