Nous formulons une version de la conjecture de Breuil–Mézard pour les algèbres de quaternions. Nous montrons que cette version est une consequence de la version originale pour . Une partie de la démonstration est la construction d’un analogue modulo de la correspondance de Jacquet–Langlands pour les représentations de ou est un corps fini de caractéristique .
We formulate a version of the Breuil–Mézard conjecture for quaternion algebras, and show that it follows from the Breuil–Mézard conjecture for . In the course of the proof we establish a mod analogue of the Jacquet–Langlands correspondence for representations of , a finite field of characteristic .
@article{AIF_2015__65_4_1557_0, author = {Gee, Toby and Geraghty, David}, title = {The Breuil--M\'ezard Conjecture for quaternion algebras}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1557-1575}, doi = {10.5802/aif.2967}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1557_0} }
Gee, Toby; Geraghty, David. The Breuil–Mézard Conjecture for quaternion algebras. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1557-1575. doi : 10.5802/aif.2967. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1557_0/
[1] Formes modulaires de Hilbert modulo et valeurs d’extensions entre caractères galoisiens, Ann. Sci. Éc. Norm. Supér. (4), Tome 47 (2014) no. 5, pp. 905-974 | MR 3294620
[2] Multiplicités modulaires et représentations de et de en , Duke Math. J., Tome 115 (2002) no. 2, pp. 205-310 (With an appendix by Guy Henniart) | Article | MR 1944572 | Zbl 1042.11030
[3] Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4), Tome 17 (1984) no. 2, pp. 191-225 | Numdam | MR 760676 | Zbl 0549.22009
[4] A correspondence between representations of local Galois groups and Lie-type groups, -functions and Galois representations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 320 (2007), pp. 187-206 | Article | MR 2392355 | Zbl 1230.11069
[5] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Tome 2 (2014), pp. e1, 56 | Article | MR 3292675
[6] Serre weights for quaternion algebras, Compos. Math., Tome 147 (2011) no. 4, pp. 1059-1086 | Article | MR 2822861 | Zbl 1282.11042
[7] The geometry and cohomology of some simple Shimura varieties, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 151 (2001), pp. viii+276 (With an appendix by Vladimir G. Berkovich) | MR 1876802 | Zbl 1036.11027
[8] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Tome 21 (2008) no. 2, pp. 513-546 | Article | MR 2373358 | Zbl 1205.11060
[9] The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., Tome 22 (2009) no. 3, pp. 641-690 | Article | MR 2505297 | Zbl 1251.11045
[10] The structure of potentially semi-stable deformation rings, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 294-311 | MR 2827797 | Zbl 1273.11090
[11] Character formulas for supercuspidal representations of a prime, Amer. J. Math., Tome 109 (1987) no. 2, pp. 201-221 | Article | MR 882420 | Zbl 0618.22006
[12] On the Breuil-Mézard conjecture, Duke Math. J., Tome 164 (2015) no. 2, pp. 297-359 | Article | MR 3306557