On considère des variétés lorentziennes avec un champ de vecteurs de genre lumière parallèle. Comme il est parallèle et de genre lumière, son complément orthogonal induit un feuilletage de codimension un. Si on suppose les feuilles compactes et la courbure de Ricci positive (ou nulle) sur les feuilles, on sait que le premier nombre de Betti est borné par la dimension de la variété ou de la feuille, suivant la compacité ou non-compacité de la variété. Nous démontrons que dans le cas où le nombre de Betti est maximal, quitte à la remplacer par un revêtement fini, toute telle variété lorentzienne est soit difféomorphe au tore (si elle est compacte) ou alors au produit d’une droite avec un tore (autrement), et que sa courbure est très dégénérée, c’est-à-dire le tenseur de courbure induit sur les feuilles est de genre lumière.
We consider Lorentzian manifolds with parallel light-like vector field . Being parallel and light-like, the orthogonal complement of induces a codimension one foliation. Assuming compactness of the leaves and non-negative Ricci curvature on the leaves it is known that the first Betti number is bounded by the dimension of the manifold or the leaves if the manifold is compact or non-compact, respectively. We prove in the case of the maximality of the first Betti number that every such Lorentzian manifold is – up to finite cover – diffeomorphic to the torus (in the compact case) or the product of the real line with a torus (in the non-compact case) and has very degenerate curvature, i.e. the curvature tensor induced on the leaves is light-like.
@article{AIF_2015__65_4_1423_0, author = {Schliebner, Daniel}, title = {On Lorentzian manifolds with highest first Betti number}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1423-1436}, doi = {10.5802/aif.2962}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_4_1423_0} }
Schliebner, Daniel. On Lorentzian manifolds with highest first Betti number. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1423-1436. doi : 10.5802/aif.2962. http://gdmltest.u-ga.fr/item/AIF_2015__65_4_1423_0/
[1] Holonomy groups of Lorentzian manifolds: a status report, Global differential geometry, Springer, Heidelberg (Springer Proc. Math.) Tome 17 (2012), pp. 163-200 | Article | MR 3289843 | Zbl 1242.53001
[2] The homology sequence of the double covering: Betti numbers and duality, Proc. Amer. Math. Soc., Tome 23 (1969), pp. 714-717 | MR 253338 | Zbl 0204.56103
[3] Transversally parallelizable foliations of codimension two, Trans. Amer. Math. Soc., Tome 194 (1974), p. 79-102, erratum, ibid. 207 (1975), 406 | Article | MR 370617 | Zbl 0302.57009
[4] Finiteness and tenseness theorems for Riemannian foliations, Amer. J. Math., Tome 120 (1998) no. 6, pp. 1237-1276 | Article | MR 1657170 | Zbl 0964.53019
[5] Topology of 4-manifolds, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 39 (1990), pp. viii+259 | MR 1201584 | Zbl 0705.57001
[6] Holonomy groups of Lorentzian manifolds: classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, Eur. Math. Soc., Zürich (ESI Lect. Math. Phys.) (2008), pp. 53-96 | MR 2436228 | Zbl 1152.53036
[7] The lower central and derived series of the braid groups of the sphere, Trans. Amer. Math. Soc., Tome 361 (2009) no. 7, pp. 3375-3399 | Article | MR 2491885 | Zbl 1226.20027
[8] Modified differentials and basic cohomology for Riemannian foliations, J. Geom. Anal., Tome 23 (2013) no. 3, pp. 1314-1342 | Article | MR 3078356 | Zbl 1276.53031
[9] Algebraic topology, Cambridge University Press, Cambridge (2002), pp. xii+544 | MR 1867354 | Zbl 1044.55001
[10] Global Aspects of Holonomy in Pseudo-Riemannian Geometry, Humboldt-Universität zu Berlin (2011) (Ph. D. Thesis)
[11] Screen bundles of Lorentzian manifolds and some generalisations of pp-waves, J. Geom. Phys., Tome 56 (2006) no. 10, pp. 2117-2134 | Article | MR 2241741 | Zbl 1111.53020
[12] Completeness of compact Lorentzian manifolds with Abelian holonomy (2013) (http://arxiv.org/abs/1306.0120)
[13] An application of stochastic flows to Riemannian foliations, Houston J. Math., Tome 26 (2000) no. 3, pp. 481-515 | MR 1811936 | Zbl 1159.58311
[14] Affine structures in -manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2), Tome 56 (1952), pp. 96-114 | Article | MR 48805 | Zbl 0048.17102
[15] Deux remarques sur les flots riemanniens, Manuscripta Math., Tome 51 (1985) no. 1-3, pp. 145-161 | Article | MR 788676 | Zbl 0585.53026
[16] Riemannian geometry, Springer, New York, Graduate Texts in Mathematics, Tome 171 (2006), pp. xvi+401 | MR 2243772 | Zbl 1220.53002
[17] Sur la courbure moyenne des variétés intégrales d’une équation de Pfaff , C. R. Acad. Sci. Paris, Tome 231 (1950), p. 101-102 | MR 36065 | Zbl 0040.24401
[18] The Gysin sequence for Riemannian flows, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 288 (2001), pp. 415-419 | MR 1871045 | Zbl 0999.58002
[19] Differential geometry: Cartan’s generalization of Klein’s Erlangen program. Foreword by S. S. Chern., Berlin: Springer (1997), pp. xix + 421 | MR 1453120 | Zbl 0876.53001
[20] Geometry of foliations, Birkhäuser Verlag, Basel, Monographs in Mathematics, Tome 90 (1997), pp. viii+305 | Article | MR 1456994 | Zbl 0905.53002
[21] On irreducible -manifolds which are sufficiently large, Ann. of Math. (2), Tome 87 (1968), pp. 56-88 | Article | MR 224099 | Zbl 0157.30603
[22] Surgery on compact manifolds, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 69 (1999), pp. xvi+302 (Edited and with a foreword by A. A. Ranicki) | Article | MR 1687388 | Zbl 0935.57003