Nous prouvons la finitude de la cohomologie cristalline de niveau fini. Un ingrédient important est un “complexe de de Rham supérieur” qui satisfait un analogue du lemme de Poincaré.
We prove the finiteness of crystalline cohomology of higher level. An important ingredient is a “higher de Rham complex” that satisfies a kind of Poincaré lemma.
@article{AIF_2015__65_3_975_0, author = {Miyatani, Kazuaki}, title = {Finiteness of crystalline cohomology of higher level}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {975-1004}, doi = {10.5802/aif.2949}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_975_0} }
Miyatani, Kazuaki. Finiteness of crystalline cohomology of higher level. Annales de l'Institut Fourier, Tome 65 (2015) pp. 975-1004. doi : 10.5802/aif.2949. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_975_0/
[1] Théorie de Topos et Cohomologie Étale des Schémas I, II, III, Springer-Verlag, Lecture Notes in Math., Tome 269, 270, 305 (1971)
[2] Cohomologie cristalline des schémas de caractéristique , Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Vol. 407 (1974), pp. 604 | MR 384804 | Zbl 0298.14012
[3] Letter to Illusie (1990)
[4] -modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4), Tome 29 (1996) no. 2, pp. 185-272 | Numdam | MR 1373933 | Zbl 0886.14004
[5] -modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) (2000) no. 81, pp. vi+136 | Numdam | Zbl 0948.14017
[6] Letter to Abe and the author (2010)
[7] Théorie des Intersections et Théorème de Riemann-Roch, Springer-Verlag, Lecture Notes in Math., Tome 225 (1971)
[8] Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo (1978), pp. vi+243 | MR 491705 | Zbl 0383.14010
[9] Transversal crystals of finite level, Ann. Inst. Fourier (Grenoble), Tome 47 (1997) no. 1, pp. 69-100 | Article | Numdam | MR 1437179 | Zbl 0883.14006
[10] The exact Poincaré lemma in crystalline cohomology of higher level, J. Algebra, Tome 240 (2001) no. 2, pp. 559-588 | Article | MR 1841347 | Zbl 1064.14015