On montre une inégalité de Cheeger pour la première valeur propre de Steklov. Elle fait intervenir deux constantes isopérimétriques.
We prove a Cheeger inequality for the first positive Steklov eigenvalue. It involves two isoperimetric constants.
@article{AIF_2015__65_3_1381_0, author = {Jammes, Pierre}, title = {Une in\'egalit\'e de Cheeger pour le spectre de Steklov}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1381-1385}, doi = {10.5802/aif.2960}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1381_0} }
Jammes, Pierre. Une inégalité de Cheeger pour le spectre de Steklov. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1381-1385. doi : 10.5802/aif.2960. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1381_0/
[1] On a mixed Poincaré-Steklov Type Spectral Problem in a Lipschitz Domain, Russ. J. Math. Phys., Tome 13 (2005) no. 3, pp. 239-244 | Article | MR 2262827 | Zbl 1162.35351
[2] Isoperimetric inequalities and applications, Pitman, Monographs and Studies in Mathematics, Tome 7 (1980) | MR 572958 | Zbl 0519.53037
[3] The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math., Tome 357 (1985), pp. 101-114 | MR 783536 | Zbl 0553.53027
[4] On Cheeger inequality , Geometry of the Laplace operator, Amer. Math. Soc. (Proc. Sympos. Pure Math., XXXVI) (1980), pp. 29-77 | MR 573428 | Zbl 0432.58024
[5] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969), Princeton Univ. Press (1970) | MR 402831 | Zbl 0212.44903
[6] Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain, J. Geom. Anal., Tome 7 (1997) no. 2, pp. 217-239 | Article | MR 1646764 | Zbl 0920.58054
[7] Isoperimetric control of the Steklov spectrum, J. Funct. Anal., Tome 261 (2011) no. 5, pp. 1384-1399 | Article | MR 2807105 | Zbl 1235.58020
[8] The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal., Tome 150 (1997) no. 2, pp. 544-556 | Article | MR 1479552 | Zbl 0888.58066
[9] An isoperimetric Inequality and the first Steklov Eigenvalue, J. Funct. Anal., Tome 165 (1999) no. 1, pp. 101-116 | Article | MR 1696453 | Zbl 0935.58015
[10] On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues, Functional Analysis and its Applications, Tome 44 (2010) no. 2, pp. 106-117 | Article | MR 2681956 | Zbl 1217.35125
[11] Prescription du spectre du laplacien de Hodge-de Rham, Ann. scient. Éc. norm. sup. (4), Tome 37 (2004) no. 2, pp. 270-303 | Numdam | MR 2061782 | Zbl 1068.58016
[12] Geometric Integration Theory, Birkäuser (2008) | MR 2427002 | Zbl 1149.28001
[13] The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989), SIAM (1990), pp. 101-139 | MR 1046433 | Zbl 0713.35100
[14] Electrical impedance tomography and Calderón’s problem, Inverse Problems, Tome 25 (2009) no. 12, pp. 123011, 39 | Article | Zbl 1181.35339