Soit un groupe et un sous-groupe de . Un –complément de est un sous-groupe de tel que et . Le problème auquel on s’intéresse est de classifier et décrire tous les –compléments de . Nous donnons la réponse à ce problème en trois étapes. Fixons un –complément de et soient les actions canoniques associées à la factorisation . On commence par déformer en un nouveau –complément à l’aide d’une certaine fonction appelée fonction de déformation de . Ensuite on donne la description de tous les –compléments : est un –complément de si et seulement si est isomorphe à pour une certaine fonction de déformation . Enfin, la classification des –compléments prouve qu’il existe une bijection entre les classes d’isomorphisme de tous les –compléments de et un objet cohomologique . Comme application, on démontre que la formule qui calcule le nombre de classes d’isomorphisme des groupes d’ordre peut être retrouvée à partir de la factorisation .
Let be a subgroup of a group . An –complement of is a subgroup of such that and . The classifying complements problem asks for the description and classification of all –complements of . We shall give the answer to this problem in three steps. Let be a given –complement of and the canonical left/right actions associated to the factorization . First, is deformed to a new –complement of , denoted by , using a deformation map of the matched pair . Then the description of all complements is given: is an –complement of if and only if is isomorphic to , for some deformation map . Finally, the classification of complements proves that there exists a bijection between the isomorphism classes of all –complements of and a cohomological object . As an application we show that the theoretical formula for computing the number of isomorphism types of all groups of order arises only from the factorization .
@article{AIF_2015__65_3_1349_0, author = {Agore, Ana-Loredana and Militaru, Gigel}, title = {Classifying complements for groups. Applications}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1349-1365}, doi = {10.5802/aif.2958}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1349_0} }
Agore, Ana-Loredana; Militaru, Gigel. Classifying complements for groups. Applications. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1349-1365. doi : 10.5802/aif.2958. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1349_0/
[1] Classifying complements for associative algebras, Linear Algebra Appl., Tome 446 (2014), pp. 345-355 | Article | MR 3163149 | Zbl 1297.16006
[2] Classifying complements for Hopf algebras and Lie algebras, J. Algebra, Tome 391 (2013), pp. 193-208 | Article | MR 3081628 | Zbl 1293.16026
[3] Schreier type theorems for bicrossed products, Cent. Eur. J. Math., Tome 10 (2012) no. 2, pp. 722-739 | Article | MR 2886568 | Zbl 1271.20038
[4] On finite factorizable groups, J. Algebra, Tome 86 (1984) no. 2, pp. 522-548 | Article | MR 732264 | Zbl 0526.20014
[5] On group factorizations using free mappings, J. Algebra Appl., Tome 7 (2008) no. 5, pp. 647-662 | Article | MR 2459096 | Zbl 1188.20022
[6] On finite groups with two independent generators. I, II, III, IV, Proc. Nat. Acad. Sci. U. S. A., Tome 37 (1951), p. 604-610, 677–691, 749–760, 808–813 | Article | MR 45716 | Zbl 0043.02403 | Zbl 0044.01403 | Zbl 0044.01401
[7] On the product of two finite solvable groups, J. Algebra, Tome 80 (1983) no. 2, pp. 517-536 | Article | MR 691811 | Zbl 0503.20005
[8] A proof of Szep’s conjecture on nonsimplicity of certain finite groups, J. Algebra, Tome 108 (1987) no. 2, pp. 340-354 | Article | MR 892909 | Zbl 0614.20013
[9] Factorizations of the sporadic simple groups, Arch. Math. (Basel), Tome 47 (1986) no. 2, pp. 97-102 | Article | MR 859256 | Zbl 0578.20008
[10] Factorisations of sporadic simple groups, J. Algebra, Tome 304 (2006) no. 1, pp. 311-323 | Article | MR 2256393 | Zbl 1107.20019
[11] On the structure of certain factorizable groups. II, Proc. Amer. Math. Soc., Tome 11 (1960), pp. 214-219 | Article | MR 111786 | Zbl 0216.08203
[12] Über einfache und mehrfache Bedeckung des -dimensionalen Raumes mit einem Würfelgitter, Math. Z., Tome 47 (1941), pp. 427-467 | Article | MR 6425 | Zbl 0025.25401
[13] Über das Produkt von zwei abelschen Gruppen, Math. Z., Tome 62 (1955), p. 400-401 | Article | MR 71426 | Zbl 0064.25203
[14] The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., Tome 86 (1990) no. 432, pp. iv+151 | Article | MR 1016353
[15] On factorizations of almost simple groups, J. Algebra, Tome 185 (1996) no. 2, pp. 409-419 | Article | MR 1417379 | Zbl 0862.20016
[16] Regular subgroups of primitive permutation groups, Mem. Amer. Math. Soc., Tome 203 (2010) no. 952, pp. vi+74 | Article | MR 2588738 | Zbl 1198.20002
[17] Sur les groupes échangeables et les groupes décomposables, Bull. Soc. Math. France, Tome 28 (1900), pp. 7-16 | MR 1504357
[18] Factorisations of characteristically simple groups, J. Algebra, Tome 255 (2002) no. 1, pp. 198-220 | Article | MR 1935043 | Zbl 1014.20012
[19] An introduction to the theory of groups, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 148 (1995), pp. xvi+513 | Article | MR 1307623 | Zbl 0810.20001
[20] Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, Comment. Math. Helv., Tome 22 (1949), p. 31-33 (1948) | Article | MR 26654 | Zbl 0036.15303
[21] Zur Theorie der endlichen einfachen Gruppen, Acta Sci. Math. Szeged, Tome 14 (1951), p. 111-112 | MR 48439 | Zbl 0043.25902
[22] On factorisable groups, Acta Univ. Szeged. Sect. Sci. Math., Tome 13 (1950), pp. 235-238 | MR 48433 | Zbl 0039.25502
[23] Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, Tome 9 (1981) no. 8, pp. 841-882 | Article | MR 611561 | Zbl 0456.16011
[24] Groups which are products of finite simple groups, Arch. Math. (Basel), Tome 50 (1988) no. 1, pp. 1-4 | Article | MR 925486 | Zbl 0611.20017
[25] The factorisation of the alternating and symmetric groups, Math. Z., Tome 175 (1980) no. 2, pp. 171-179 | Article | MR 597089 | Zbl 0424.20004