Soit un corps non archimédien complet et soit un disque -affinoïde fermé. Nous classifions les formes modérément ramifiées de . Nous généralisons quelques résultats classiques de P. Russell sur les formes inséparables d’une droite affine et nous construisons des familles explicites des formes sauvagement ramifiées de . Finalement, nous déterminons le groupe des classes et le groupe de Grothendieck de quelques formes de .
Let be a complete nonarchimedean field and let be an affinoid closed disc over . We classify the tamely ramified twisted forms of . Generalizing classical work of P. Russell on inseparable forms of the affine line we construct explicit families of wildly ramified forms of . We finally compute the class group and the Grothendieck group of forms of in certain cases.
@article{AIF_2015__65_3_1301_0, author = {Schmidt, Tobias}, title = {Forms of an affinoid disc and ramification}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1301-1347}, doi = {10.5802/aif.2957}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1301_0} }
Schmidt, Tobias. Forms of an affinoid disc and ramification. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1301-1347. doi : 10.5802/aif.2957. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1301_0/
[1] Homological dimension in local rings, Trans. Amer. Math. Soc., Tome 85 (1957), pp. 390-405 | Article | MR 86822 | Zbl 0078.02802
[2] Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A., Tome 45 (1959), p. 733-734 | Article | MR 103906 | Zbl 0084.26504
[3] On -radical descent of higher exponent, Osaka J. Math., Tome 18 (1981) no. 3, pp. 725-748 | MR 635730 | Zbl 0478.13001
[4] Algebraic -theory, W. A. Benjamin, Inc., New York-Amsterdam (1968), pp. xx+762 | MR 249491 | Zbl 0174.30302
[5] Spectral theory and analytic geometry over non-archimedean fields, American Mathematical Society, Providence, Rhode Island, Math. Surveys and Monographs, Tome 33 (1990) | MR 1070709 | Zbl 0715.14013
[6] Non-Archimedean analysis, Springer-Verlag, Berlin (1984) | MR 746961 | Zbl 0539.14017
[7] Commutative algebra. Chapters 1–7, Springer-Verlag, Berlin, Elements of Mathematics (Berlin) (1998) | MR 1727221 | Zbl 0719.12001
[8] Descent for non-archimedean analytic spaces. (http://math.huji.ac.il/~temkin/papers/Descent.pdf)
[9] Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris (1970), pp. xxvi+700 (Avec un appendice ıt Corps de classes local par Michiel Hazewinkel) | MR 302656 | Zbl 0203.23401
[10] Toute forme modérément ramifiée d’un polydisque ouvert est triviale, Math. Z., Tome 273 (2013) no. 1-2, pp. 331-353 | Article | MR 3010163 | Zbl 1264.14035
[11] Lectures in abstract algebra. III, Springer-Verlag, New York (1975), pp. xi+323 (Theory of fields and Galois theory, Graduate Texts in Math., No. 32) | MR 392906 | Zbl 0326.00001
[12] Unipotent algebraic groups, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 414 (1974), pp. v+165 | MR 376696 | Zbl 0294.14022
[13] Maximal fields with valuations, Duke Math. J., Tome 9 (1942), pp. 303-321 | Article | MR 6161 | Zbl 0063.03135
[14] Théorie de la descente et algèbres d’Azumaya, Springer-Verlag, Berlin, Lecture Notes in Math., Vol. 389 (1974), pp. iv+163 | MR 417149 | Zbl 0284.13002
[15] Algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 211 (2002), pp. xvi+914 | MR 1878556 | Zbl 0984.00001
[16] Ordered groups, Proc. Indian Acad. Sci., Sect. A., Tome 16 (1942), pp. 256-263 | MR 7779 | Zbl 0061.03403
[17] Note on the of rings with Zariskian filtration, -Theory, Tome 3 (1990) no. 6, pp. 603-606 | Article | MR 1071897 | Zbl 0709.16023
[18] Global dimension and Auslander regularity of Rees rings, Bull. Math. Soc. Belgique, Tome (serie A) XLIII (1991), pp. 59-87 | MR 1315771 | Zbl 0753.16003
[19] Zariskian filtrations, Kluwer Academic Publishers, Dordrecht, K-Monographs in Mathematics, Tome 2 (1996), pp. x+252 | Zbl 0862.16027
[20] Commutative ring theory, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 8 (1986), pp. xiv+320 | MR 879273 | Zbl 0603.13001
[21] Noncommutative Noetherian rings, John Wiley & Sons Ltd., Chichester, Pure and Applied Mathematics (New York) (1987), pp. xvi+596 | MR 934572 | Zbl 0644.16008
[22] Methods of graded rings, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1836 (2004), pp. xiv+304 | MR 2046303 | Zbl 1043.16017
[23] Higher algebraic -theory. I, Algebraic -theory, I: Higher -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin (1973), p. 85-147. Lecture Notes in Math., Vol. 341 | MR 338129 | Zbl 0292.18004
[24] Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings, Ann. Sci. Éc. Norm. Supér. (4), Tome 43 (2010) no. 3, pp. 461-554 | Numdam | MR 2667022 | Zbl 1198.51006
[25] Forms of the affine line and its additive group, Pacific J. Math., Tome 32 (1970), pp. 527-539 | Article | MR 265367 | Zbl 0199.24502
[26] Classes de diviseurs et dérivées logarithmiques, Topology, Tome 3 (1964) no. suppl. 1, pp. 81-96 | Article | MR 166213 | Zbl 0127.26002
[27] Local fields, Springer-Verlag, New York, Graduate Texts in Math., Tome 67 (1979), pp. viii+241 | MR 554237 | Zbl 0423.12016
[28] Galois cohomology, Springer-Verlag, Berlin, Springer Monographs in Math. (2002), pp. x+210 | MR 1867431 | Zbl 1004.12003
[29] On local properties of non-Archimedean analytic spaces, Math. Ann., Tome 318 (2000) no. 3, pp. 585-607 | Article | MR 1800770 | Zbl 0972.32019
[30] On local properties of non-Archimedean analytic spaces. II, Israel J. Math., Tome 140 (2004), pp. 1-27 | Article | MR 2054837 | Zbl 1066.32025
[31] Introduction to affine group schemes, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 66 (1979), pp. xi+164 | MR 547117 | Zbl 0442.14017
[32] An introduction to algebraic K-theory (http://www.math.rutgers.edu/~weibel/Kbook.html) | MR 3076731