Soit le plan affine muni de sa structure de variété torique via l’action du tore de dimension deux. Nous étudions l’anneau de Chow équivariant du schéma de Hilbert . Nous calculons les formules de changement de base entre les bases naturelles introduites par Nakakjima, Ellingsrud et Strømme, et la base classique associée aux points fixes. Nous calculons les relations de commutation quivariantes entre les opérateurs de création/destruction. Nous exprimons la classe de la petite diagonale de en fonction des classes de Chern équivariante du fibré tautologique. Nous montrons que le schéma de Hilbert imbriqué paramétrant les couples de schémas ponctuels imbriqués de degrés respectifs et est irréductible.
Let be the affine plane regarded as a toric variety with an action of the 2-dimensional torus . We study the equivariant Chow ring of the punctual Hilbert scheme with equivariant coefficients inverted. We compute base change formulas in between the natural bases introduced by Nakajima, Ellingsrud and Str mme, and the classical basis associated to the fixed points. We compute the equivariant commutation relations between creation/annihilation operators. We express the class of the small diagonal in in terms of the equivariant Chern classes of the tautological bundle. We prove that the nested Hilbert scheme parametrizing nested punctual subschemes of degree and is irreducible.
@article{AIF_2015__65_3_1201_0, author = {Chaput, Pierre-Emmanuel and Evain, Laurent}, title = {On the equivariant cohomology of Hilbert schemes of points in the plane}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1201-1250}, doi = {10.5802/aif.2955}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1201_0} }
Chaput, Pierre-Emmanuel; Evain, Laurent. On the equivariant cohomology of Hilbert schemes of points in the plane. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1201-1250. doi : 10.5802/aif.2955. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1201_0/
[1] Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Tome 24 (1976) no. 9, pp. 667-674 | MR 453766 | Zbl 0355.14015
[2] Description de , Invent. Math., Tome 41 (1977) no. 1, pp. 45-89 | Article | MR 457432 | Zbl 0353.14004
[3] Equivariant Chow groups for torus actions, Transform. Groups, Tome 2 (1997) no. 3, pp. 225-267 | Article | MR 1466694 | Zbl 0916.14003
[4] Nested punctual Hilbert schemes and commuting varieties of parabolic subalgebras (http://arxiv.org/abs/1306.4838)
[5] On the equivariant cohomology of Hilbert schemes of points in the plane (http://arxiv.org/abs/1205.5470)
[6] Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math., Tome 183 (1998) no. 1, pp. 39-90 | Article | MR 1616606 | Zbl 0904.14001
[7] Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math., Tome 120 (1998) no. 3, pp. 619-636 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.3edidin.pdf | Article | MR 1623412 | Zbl 0980.14004
[8] On the homology of the Hilbert scheme of points in the plane, Invent. Math., Tome 87 (1987) no. 2, pp. 343-352 | Article | MR 870732 | Zbl 0625.14002
[9] The Chow ring of punctual Hilbert schemes on toric surfaces, Transform. Groups, Tome 12 (2007) no. 2, pp. 227-249 | Article | MR 2323683 | Zbl 1128.14004
[10] Irreducible components of the equivariant punctual Hilbert schemes, Adv. Math., Tome 185 (2004) no. 2, pp. 328-346 | Article | MR 2060472 | Zbl 1064.14004
[11] Intersection theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 2 (1998), pp. xiv+470 | Article | MR 1644323 | Zbl 0541.14005
[12] On the ramification of branched coverings of , Invent. Math., Tome 59 (1980) no. 1, pp. 53-58 | Article | MR 575080 | Zbl 0422.14010
[13] Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris (1995), pp. Exp. No. 221, 249-276 | Numdam | Zbl 0236.14003
[14] BRANCHED COVERINGS OF PROJECTIVE SPACE, ProQuest LLC, Ann Arbor, MI (1980), pp. 45 (Thesis (Ph.D.)–Brown University) | MR 2631143
[15] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math., Tome 136 (1999) no. 1, pp. 157-207 | Article | MR 1681097 | Zbl 0919.14001
[16] Lectures on Hilbert schemes of points on surfaces, American Mathematical Society, Providence, RI, University Lecture Series, Tome 18 (1999), pp. xii+132 | MR 1711344 | Zbl 0949.14001
[17] The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of (http://arxiv.org/abs/0905.2555) | MR 3018956
[18] Sur l’anneau de cohomologie du schéma de Hilbert de , C. R. Acad. Sci. Paris Sér. I Math., Tome 332 (2001) no. 1, pp. 7-12 | Article | MR 1805619 | Zbl 0991.14001