L’espace des modules de structures projectives convexes sur un orbifold simplicial hyperbolique est soit un point soit la droite réelle. En répondant à une question de M. Crampon, nous prouvons que dans ce dernier cas, quand on tend vers l’infini dans l’espace des modules, l’entropie de la métrique de Hilbert tend vers .
The moduli space of convex projective structures on a simplicial hyperbolic Coxeter orbifold is either a point or the real line. Answering a question of M. Crampon, we prove that in the latter case, when one goes to infinity in the moduli space, the entropy of the Hilbert metric tends to .
@article{AIF_2015__65_3_1005_0, author = {Nie, Xin}, title = {On the Hilbert geometry of simplicial Tits sets}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {1005-1030}, doi = {10.5802/aif.2950}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1005_0} }
Nie, Xin. On the Hilbert geometry of simplicial Tits sets. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1005-1030. doi : 10.5802/aif.2950. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1005_0/
[1] Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai (2004), pp. 339-374 | MR 2094116 | Zbl 1084.37026
[2] Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 5, pp. 793-832 | Article | Numdam | MR 2195260 | Zbl 1085.22006
[3] Five lectures on lattices in semisimple Lie groups, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Soc. Math. France, Paris (Sémin. Congr.) Tome 18 (2009), pp. 117-176 | MR 2655311 | Zbl 1252.22006
[4] Entropies of strictly convex projective manifolds, J. Mod. Dyn., Tome 3 (2009) no. 4, pp. 511-547 | Article | MR 2587084 | Zbl 1189.37034
[5] Sur les groupes hyperboliques d’après Mikhael Gromov, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, Tome 83 (1990), pp. xii+285 (Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | Article | MR 1086648
[6] Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 74 (1988), pp. 169-198 | Article | MR 957518 | Zbl 0659.57004
[7] Convex real projective structures on compact surfaces, J. Differential Geom., Tome 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444635 | MR 1053346 | Zbl 0711.53033
[8] On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 181 (1993), pp. 97-119 | Article | MR 1238518 | Zbl 0832.52002
[9] Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 29 (1990), pp. xii+204 | MR 1066460 | Zbl 0768.20016
[10] On complexes with transitive groups of automorphisms, Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], Tome 11 (1950), pp. 71 | MR 42129 | Zbl 0037.39802
[11] Topological entropy for geodesic flows, Ann. of Math. (2), Tome 110 (1979) no. 3, pp. 567-573 | Article | MR 554385 | Zbl 0426.58016
[12] Some linear groups virtually having a free quotient, J. Lie Theory, Tome 10 (2000) no. 1, pp. 171-180 | MR 1748082 | Zbl 0958.22008
[13] Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3), Tome 24 (1970), pp. 641-665 | Numdam | MR 283720 | Zbl 0206.51302
[14] Geometry. II, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 29 (1993), pp. viii+254 (Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, Translation by V. Minachin [V. V. Minakhin], Translation edited by È. B. Vinberg) | Article
[15] Quasi-homogeneous cones, Mat. Zametki, Tome 1 (1967), pp. 347-354 | MR 208470 | Zbl 0163.16902
[16] The degeneration of convex structures on surfaces (http://arxiv.org/abs/1312.2452)