On the Hilbert geometry of simplicial Tits sets
[Sur la géométrie de Hilbert d’ensembles de Tits simpliciaux]
Nie, Xin
Annales de l'Institut Fourier, Tome 65 (2015), p. 1005-1030 / Harvested from Numdam

L’espace des modules de structures projectives convexes sur un orbifold simplicial hyperbolique est soit un point soit la droite réelle. En répondant à une question de M. Crampon, nous prouvons que dans ce dernier cas, quand on tend vers l’infini dans l’espace des modules, l’entropie de la métrique de Hilbert tend vers 0.

The moduli space of convex projective structures on a simplicial hyperbolic Coxeter orbifold is either a point or the real line. Answering a question of M. Crampon, we prove that in the latter case, when one goes to infinity in the moduli space, the entropy of the Hilbert metric tends to 0.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2950
Classification:  20F67,  51F15,  53C60
Mots clés: structure projective convexe, groupe de réflexion, géométrie de Hilbert, entropie volumique
@article{AIF_2015__65_3_1005_0,
     author = {Nie, Xin},
     title = {On the Hilbert geometry of simplicial Tits sets},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {1005-1030},
     doi = {10.5802/aif.2950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_3_1005_0}
}
Nie, Xin. On the Hilbert geometry of simplicial Tits sets. Annales de l'Institut Fourier, Tome 65 (2015) pp. 1005-1030. doi : 10.5802/aif.2950. http://gdmltest.u-ga.fr/item/AIF_2015__65_3_1005_0/

[1] Benoist, Yves Convexes divisibles. I, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai (2004), pp. 339-374 | MR 2094116 | Zbl 1084.37026

[2] Benoist, Yves Convexes divisibles. III, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 5, pp. 793-832 | Article | Numdam | MR 2195260 | Zbl 1085.22006

[3] Benoist, Yves Five lectures on lattices in semisimple Lie groups, Géométries à courbure négative ou nulle, groupes discrets et rigidités, Soc. Math. France, Paris (Sémin. Congr.) Tome 18 (2009), pp. 117-176 | MR 2655311 | Zbl 1252.22006

[4] Crampon, Mickaël Entropies of strictly convex projective manifolds, J. Mod. Dyn., Tome 3 (2009) no. 4, pp. 511-547 | Article | MR 2587084 | Zbl 1189.37034

[5] Ghys, É.; De La Harpe, P. Sur les groupes hyperboliques d’après Mikhael Gromov, Birkhäuser Boston, Inc., Boston, MA, Progress in Mathematics, Tome 83 (1990), pp. xii+285 (Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988) | Article | MR 1086648

[6] Goldman, William M. Geometric structures on manifolds and varieties of representations, Geometry of group representations (Boulder, CO, 1987), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 74 (1988), pp. 169-198 | Article | MR 957518 | Zbl 0659.57004

[7] Goldman, William M. Convex real projective structures on compact surfaces, J. Differential Geom., Tome 31 (1990) no. 3, pp. 791-845 http://projecteuclid.org/getRecord?id=euclid.jdg/1214444635 | MR 1053346 | Zbl 0711.53033

[8] De La Harpe, Pierre On Hilbert’s metric for simplices, Geometric group theory, Vol. 1 (Sussex, 1991), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 181 (1993), pp. 97-119 | Article | MR 1238518 | Zbl 0832.52002

[9] Humphreys, James E. Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 29 (1990), pp. xii+204 | MR 1066460 | Zbl 0768.20016

[10] Lannér, Folke On complexes with transitive groups of automorphisms, Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], Tome 11 (1950), pp. 71 | MR 42129 | Zbl 0037.39802

[11] Manning, Anthony Topological entropy for geodesic flows, Ann. of Math. (2), Tome 110 (1979) no. 3, pp. 567-573 | Article | MR 554385 | Zbl 0426.58016

[12] Margulis, Grigory; Vinberg, Ernest Some linear groups virtually having a free quotient, J. Lie Theory, Tome 10 (2000) no. 1, pp. 171-180 | MR 1748082 | Zbl 0958.22008

[13] Vey, Jacques Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa (3), Tome 24 (1970), pp. 641-665 | Numdam | MR 283720 | Zbl 0206.51302

[14] Vinberg, Ernest Geometry. II, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 29 (1993), pp. viii+254 (Spaces of constant curvature, A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, Translation by V. Minachin [V. V. Minakhin], Translation edited by È. B. Vinberg) | Article

[15] Vinberg, Ernest; Kac, Victor Quasi-homogeneous cones, Mat. Zametki, Tome 1 (1967), pp. 347-354 | MR 208470 | Zbl 0163.16902

[16] Zhang, Tengren The degeneration of convex ℝℙ 2 structures on surfaces (http://arxiv.org/abs/1312.2452)