Dans cet article, on compare deux définitions de classes de Rauzy. La première a été introduite par Rauzy et a été utilisée en particulier par Veech pour démonter l’ergodicité du flot de Teichmüller. La seconde est plus récente et utilise un « étiquetage » des intervalles sous-jacents. Elle a été utilisée récemment dans les preuves de plusieurs résultats majeurs sur le flot de Teichmüller.
Les diagrammes de Rauzy obtenus avec la seconde définition sont des revêtements de ceux obtenus avec la première définition. On donne ici une formule donnant le degré de ce revêtement.
Cette formule est reliée à un espace des modules de surfaces de translations marquées, qui correspond à des surfaces de translations pour lesquelles on marque des séparatrices horizontales sur la surface. On calcule le nombre de composantes connexes de ces revêtements naturels de l’espace des modules des surfaces de translation.
Delecroix a donné récemment le cardinal des classes de Rauzy (réduites). On peut donc en déduire le cardinal des classes de Rauzy marquées.
In this paper, we compare two definitions of Rauzy classes. The first one was introduced by Rauzy and was in particular used by Veech to prove the ergodicity of the Teichmüller flow. The second one is more recent and uses a “labeling” of the underlying intervals, and was used in the proof of some recent major results about the Teichmüller flow.
The Rauzy diagrams obtained from the second definition are coverings of the initial ones. In this paper, we give a formula that gives the degree of this covering.
This formula is related to moduli spaces of framed translation surfaces, which correspond to surfaces where we label horizontal separatrices on the surface. We compute the number of connected component of these natural coverings of the moduli spaces of translation surfaces.
Delecroix has given recently a formula for the cardinality of the (reduced) Rauzy classes. Therefore, we also obtain formula for labeled Rauzy classes.
@article{AIF_2015__65_2_905_0, author = {Boissy, Corentin}, title = {Labeled Rauzy classes and framed translation surfaces}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {905-932}, doi = {10.5802/aif.2947}, zbl = {1332.37030}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_905_0} }
Boissy, Corentin. Labeled Rauzy classes and framed translation surfaces. Annales de l'Institut Fourier, Tome 65 (2015) pp. 905-932. doi : 10.5802/aif.2947. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_905_0/
[1] Exponential mixing for the Teichmüller flow, Publ. Math. IHES, Tome 104 (2006), pp. 143-211 | Article | Numdam | MR 2264836 | Zbl 1263.37051
[2] Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Tome 198 (2007) no. 1, pp. 1-56 | Article | MR 2316268 | Zbl 1143.37001
[3] Degenerations of quadratic differentials on , Geometry and Topology, Tome 12 (2008), pp. 1345-1386 | Article | MR 2421130 | Zbl 1146.30020
[4] Classification of Rauzy classes in the moduli space of abelian and quadratic differentials, Discrete Contin. Dyn. Syst., Tome 32 (2012) no. 10, pp. 3433-3457 | Article | MR 2945824 | Zbl 1268.37039
[5] Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, Tome 29 (2009) no. 3, pp. 767-816 | Article | MR 2505317 | Zbl 1195.37030
[6] Pseudo-Anosov homeomorphisms on translation surfaces in hyperelliptic components have large entropy, Geom. Funct. Anal., Tome 22 (2012) no. 1, pp. 74-106 | Article | MR 2899683 | Zbl 1260.37018
[7] Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., Tome 19 (2006) no. 3, pp. 579-623 | Article | MR 2220100 | Zbl 1100.37002
[8] Measured foliations on nonorientable surfaces, Ann. Sci. École Norm. Sup. (4), Tome 23 (1990), pp. 469-494 | Numdam | MR 1055445 | Zbl 0722.57010
[9] Cardinality of Rauzy classes, Ann. Inst. Fourier (Grenoble), Tome 63 (2013) no. 5, pp. 1651-1715 | Article | Numdam | MR 3186505 | Zbl 1285.05007
[10] Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel–Veech constants, Publ. Math. IHES, Tome 97 (2003), pp. 61-179 | Article | Numdam | MR 2010740 | Zbl 1037.32013
[11] Quadratic differentials and foliations, Acta Math., Tome 142 (1979), pp. 221-274 | Article | MR 523212 | Zbl 0415.30038
[12] Simplicial systems for interval exchange maps and measured foliations, Ergodic Theory Dynam. Systems, Tome 5 (1985) no. 2, pp. 257-271 | Article | MR 796753 | Zbl 0597.58024
[13] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Tome 153 (2003) no. 3, pp. 631-678 | Article | MR 2000471 | Zbl 1087.32010
[14] Khinchin type condition for translation surfaces and asymptotic laws for the Teichmüller flow, Bull. Soc. Math. France, Tome 140 (2012) no. 4, p. 485-532 (2013) | Numdam | MR 3059848 | Zbl 1268.37033
[15] The cohomological equation for Roth type interval exchange transformations, Journal of the Amer. Math. Soc., Tome 18 (2005), pp. 823-872 | Article | MR 2163864 | Zbl 1112.37002
[16] Interval exchange transformations and measured foliations, Ann of Math., Tome 141 (1982), pp. 169-200 | Article | MR 644018 | Zbl 0497.28012
[17] Échanges d’intervalles et transformations induites, Acta Arith., Tome 34 (1979), pp. 315-328 | MR 543205 | Zbl 0414.28018
[18] Sage Mathematics Software (Version 4.2.1), The Sage Development Team (2009) (http://www.sagemath.org)
[19] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), Tome 115 (1982) no. 1, pp. 201-242 | Article | MR 644019 | Zbl 0486.28014