Nous étudions les champs de modules des chaînes de marquées, reliés aux espaces de modules de Losev-Manin, et montrons que ces champs de modules coïncident avec certains champs toriques qui peuvent être décrits en termes de matrices de Cartan de systèmes de racines de type . Nous considérons également les variantes de ces champs liés aux systèmes de racines de type et .
We investigate moduli stacks of pointed chains of related to the Losev-Manin moduli spaces and show that these moduli stacks coincide with certain toric stacks which can be described in terms of the Cartan matrices of root systems of type . We also consider variants of these stacks related to root systems of type and .
@article{AIF_2015__65_2_863_0, author = {Blume, Mark}, title = {Toric orbifolds associated to Cartan matrices}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {863-901}, doi = {10.5802/aif.2946}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_863_0} }
Blume, Mark. Toric orbifolds associated to Cartan matrices. Annales de l'Institut Fourier, Tome 65 (2015) pp. 863-901. doi : 10.5802/aif.2946. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_863_0/
[1] Tame stacks in positive characteristic, Ann. Inst. Fourier, Tome 58 (2008), pp. 1057-1091 (arXiv:math/0703310) | Article | Numdam | MR 2427954 | Zbl 1222.14004
[2] The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces, Tohoku Math. J., Tome 63 (2011), pp. 581-604 (arXiv:0911.3607) | Article | MR 2872957 | Zbl 1255.14041
[3] On generalisations of Losev-Manin moduli spaces for classical root systems, Pure and Applied Mathematics Quarterly, Tome 7 (2011, (Special Issue: In memory of Eckart Viehweg)), pp. 1053-1084 (arXiv:0912.2898) | Article | MR 2918154
[4] The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc., Tome 18 (2005), pp. 193-213 (arXiv:math/0309229) | Article | MR 2114820 | Zbl 1178.14057
[5] The functor of a smooth toric variety, Tohoku Math. J., Tome 47 (1995), pp. 251-262 (arXiv:alg-geom/9312001) | Article | MR 1329523 | Zbl 0828.14035
[6] The homogeneous coordinate ring of a toric variety, J. Algebraic Geom., Tome 4 (1995), pp. 17-50 (arXiv:alg-geom/9210008) | MR 1299003 | Zbl 0846.14032
[7] Smooth toric Deligne-Mumford stacks, J. reine angew. Math., Tome 648 (2010), pp. 201-244 (arXiv:0708.1254) | MR 2774310 | Zbl 1211.14009
[8] Cohomologie non abélienne, Springer-Verlag, Berlin - Heidelberg - New York, Grundlehren math. Wiss., Tome 179 (1971) | MR 344253 | Zbl 0226.14011
[9] Éléments de Géométrie Algébrique, Publ. Math. IHES Tome 4,8,11,17,20,24,28,32 (1960-1967)
[10] Séminaire de géométrie algébrique, Théorie des topos et cohomologie étale des schémas, Tome 3, Springer-Verlag, Berlin - Heidelberg - New York, Lecture Notes in Mathematics, Tome 305 (1973)
[11] Integral Chow rings of toric stacks (arXiv:0705.3524)
[12] Chow quotients of Grassmannians I, Adv. Soviet Math., Tome 16 (1993), pp. 29-110 (arXiv:alg-geom/9210002) | MR 1237834 | Zbl 0811.14043
[13] The Picard scheme, Fundamental Algebraic Geometry, Amer. Math. Soc., Providence, RI (Math. Surveys Monogr.) Tome 123 (2005), p. 237-321, arXiv:math/0504020 | MR 2223410
[14] The projectivity of the moduli space of stable curves II: The stacks , Math. Scand., Tome 52 (1983), pp. 161-199 | MR 702953 | Zbl 0544.14020
[15] Champs algébriques, Springer-Verlag, Berlin - Heidelberg - New York (2000) | MR 1771927 | Zbl 0945.14005
[16] New Moduli Spaces of Pointed Curves and Pencils of Flat Connections, Michigan Math. J., Tome 48 (2000), pp. 443-472 (arXiv:math/0001003) | Article | MR 1786500 | Zbl 1078.14536
[17] A note on toric Deligne-Mumford stacks, Tohoku Math. J., Tome 60 (2008), pp. 441-458 (arXiv:0705.3823) | Article | MR 2453733 | Zbl 1174.14044
[18] Grothendieck topologies, fibered categories and descent theory, Fundamental Algebraic Geometry, Amer. Math. Soc., Providence, RI (Math. Surveys Monogr.) Tome 123 (2005), p. 1-104, arXiv:math/0412512 | MR 2223406