Orbifold generic semi-positivity: an application to families of canonically polarized manifolds
[Semi-positivité orbifolde : une application aux familles de variétés canoniquement polarisées]
Campana, Frédéric ; Păun, Mihai
Annales de l'Institut Fourier, Tome 65 (2015), p. 835-861 / Harvested from Numdam

Nous définissons la notion de ‘fibré cotangent orbifolde’ Ω 1 (X,Δ) pour une paire (X,Δ) log-canonique : ce fibré est défini sur des revêtement cycliques adéquats. Nous formulons et démontrons ensuite une version orbifolde du théorème de semi-positivité générique de Y. Miyaoka : Ω 1 (X,Δ) est génériquement semi-positif si K X +Δ est pseudo-effectif. Nous en déduisons, à l’aide des résultats récents du PMML, un énoncé conjecturé par E. Viehweg : si X est lisse, et si Δ est un diviseur réduit à croisements normaux simples sur X tel qu’une puissance tensorielle de Ω X 1 (Log(Δ)) contienne un fibré en droites ‘big’, alors K X +Δ est lui-même ‘big’. Les travaux de Viehweg-Zuo impliquent alors la conjecture d’hyperbolicité de V.I. Shafarevich : si une famille algébrique de variétés projectives canoniquement polarisées et paramétrée par une variété quasi-projective irréductible lisse B a une ‘variation’ maximale, égale à dim(B), alors B est de type log-général.

Let X be a normal projective manifold, equipped with an effective ‘orbifold’ divisor Δ, such that the pair (X,Δ) is log-canonical. We first define the notion of ‘orbifold cotangent bundle’ Ω 1 (X,Δ), living on any suitable ramified cover of X. We are then in position to formulate and prove (in a completely different way) an orbifold version of Y. Miyaoka’s generic semi-positivity theorem: Ω 1 (X,Δ) is generically semi-positive if K X +Δ is pseudo-effective. Using the deep results of the LMMP, we immediately get a statement conjectured by E. Viehweg: if X is smooth, and if Δ is a reduced divisor with simple normal crossings on X such that some tensor power of Ω 1 (X,Δ)=Ω X 1 (Log(Δ)) contains the injective image of a big line bundle, then K X +Δ is big.

This implies, by fundamental results of Viehweg-Zuo, the ‘Shafarevich-Viehweg hyperbolicity conjecture’: if an algebraic family of canonically polarized manifolds parametrised by a quasi-projective manifold B has ‘maximal variation’, then B is of log-general type.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2945
Classification:  14D05,  14D22,  14E22,  14E30,  14J40,  32J25
Mots clés: Fibré cotangent orbifolde, semi-positivité générique, variétés canoniquement polarisées
@article{AIF_2015__65_2_835_0,
     author = {Campana, Fr\'ed\'eric and P\u aun, Mihai},
     title = {Orbifold generic semi-positivity: an application to families of canonically polarized manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {835-861},
     doi = {10.5802/aif.2945},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_835_0}
}
Campana, Frédéric; Păun, Mihai. Orbifold generic semi-positivity: an application to families of canonically polarized manifolds. Annales de l'Institut Fourier, Tome 65 (2015) pp. 835-861. doi : 10.5802/aif.2945. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_835_0/

[1] Berndtsson, Bo; Păun, Mihai Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J., Tome 205 (2012), pp. 25-65 http://projecteuclid.org/euclid.nmj/1330611001 | Article | MR 2891164 | Zbl 1248.32012

[2] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; Mckernan, James Existence of minimal models for varieties of log general type (http://arxiv.org/abs/math/0610203) | MR 2601039 | Zbl 1210.14019

[3] Bogomolov, Fedor; Mcquillan, Michael Rational curves on foliated varieties (IHES preprint IHES/M/01/07.Février 2001.)

[4] Bost, Jean-Benoît Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. (2001) no. 93, pp. 161-221 | Article | Numdam | MR 1863738 | Zbl 1034.14010

[5] Boucksom, Sébastien; Demailly, Jean-Pierre; Paun, Mihai; Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension (http://arxiv.org/abs/math/0405285) | MR 2524080 | Zbl 1267.32017

[6] Campana, Frédéric Special orbifolds and birational classification: a survey (http://arxiv.org/abs/1001.3763)

[7] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 3, pp. 499-630 http://aif.cedram.org/item?id=AIF_2004__54_3_499_0 | Article | Numdam | MR 2097416 | Zbl 1062.14014

[8] Campana, Frédéric Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Tome 10 (2011) no. 4, pp. 809-934 | Article | MR 2831280 | Zbl 1236.14039

[9] Campana, Frédéric; Guenancia, Henri; Păun, Mihai Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4), Tome 46 (2013) no. 6, pp. 879-916 | MR 3134683

[10] Campana, Frédéric; Păun, M. A differential-geometric approach for the generic semi-positivity of orbifold tensor bundles (in preparation)

[11] Campana, Frédéric; Peternell, Thomas Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France, Tome 139 (2011) no. 1, pp. 41-74 (With an appendix by Matei Toma) | Numdam | MR 2815027 | Zbl 1218.14030

[12] Demailly, Jean-Pierre Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 285-360 | Article | MR 1492539 | Zbl 0919.32014

[13] Demailly, Jean-Pierre Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Tome 7 (2011) no. 4, Special Issue: In memory of Eckart Viehweg, pp. 1165-1207 | Article | MR 2918158

[14] Esnault, Hélène; Viehweg, Eckart Lectures on vanishing theorems, Birkhäuser Verlag, Basel, DMV Seminar, Tome 20 (1992), pp. vi+164 | Article | MR 1193913 | Zbl 0779.14003

[15] Hartshorne, Robin Cohomological dimension of algebraic varieties, Ann. of Math. (2), Tome 88 (1968), pp. 403-450 | Article | MR 232780 | Zbl 0169.23302

[16] Höring, A. On a conjecture of Beltrametti and Sommese (http://arxiv.org/abs/0912.1295) | Zbl 1253.14007

[17] Jabbusch, Kelly; Kebekus, Stefan Positive sheaves of differentials coming from coarse moduli spaces (http://arxiv.org/abs/0904.2445) | Numdam | MR 2976311 | Zbl 1253.14009

[18] Jabbusch, Kelly; Kebekus, Stefan Families over special base manifolds and a conjecture of Campana, Math. Z., Tome 269 (2011) no. 3-4, pp. 847-878 | Article | MR 2860268 | Zbl 1238.14024

[19] Kawamata, Yujiro Subadjunction of log canonical divisors for a subvariety of codimension 2, Birational algebraic geometry (Baltimore, MD, 1996), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 207 (1997), pp. 79-88 | Article | MR 1462926 | Zbl 0901.14004

[20] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 10 (1987), pp. 283-360 | MR 946243 | Zbl 0672.14006

[21] Kebekus, Stefan Differential forms on singular spaces, the minimal program, and hyperbolicity of moduli (http://arxiv.org/abs/1107.4239)

[22] Kebekus, Stefan; Kovács, Sándor J. Families of canonically polarized varieties over surfaces, Invent. Math., Tome 172 (2008) no. 3, pp. 657-682 | Article | MR 2393082 | Zbl 1140.14031

[23] Kebekus, Stefan; Kovács, Sándor J. The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., Tome 155 (2010) no. 1, pp. 1-33 | Article | MR 2730371 | Zbl 1208.14027

[24] Kebekus, Stefan; Solá Conde, Luis; Toma, Matei Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Tome 16 (2007) no. 1, pp. 65-81 | Article | MR 2257320 | Zbl 1120.14011

[25] Kollár, János Lectures on resolution of singularities, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 166 (2007), pp. vi+208 | MR 2289519 | Zbl 1113.14013

[26] Langer, A. Logarithmic orbifold Euler numbers of surfaces with applications (http://arxiv.org/abs/math/0012180) | MR 1971155 | Zbl 1052.14037

[27] Miyaoka, Yoichi Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 46 (1987), pp. 245-268 | MR 927960 | Zbl 0659.14008

[28] Paršin, A. N. Algebraic curves over function fields, Dokl. Akad. Nauk SSSR, Tome 183 (1968), pp. 524-526 | MR 236180 | Zbl 0176.50903

[29] Patakfalvi, Zsolt Viehweg hyperbolicity conjecture is true over compact bases (http://arxiv.org/abs/1109.2835) | MR 2871152 | Zbl 1235.14031

[30] Taji, Behrouz The isotriviality of families of canonically-polarised manifolds over a special quasi-projective base (http://arxiv.org/abs/1310.5391)

[31] Viehweg, Eckart; Zuo, Kang Base spaces of non-isotrivial families of smooth minimal models, Complex geometry (Göttingen, 2000), Springer, Berlin (2002), pp. 279-328 | MR 1922109 | Zbl 1006.14004

[32] Yano, K.; Bochner, S. Curvature and Betti numbers, Princeton University Press, Princeton, N. J., Annals of Mathematics Studies, No. 32 (1953), pp. ix+190 | MR 62505 | Zbl 0051.39402

[33] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059