Nous définissons la notion de ‘fibré cotangent orbifolde’ pour une paire log-canonique : ce fibré est défini sur des revêtement cycliques adéquats. Nous formulons et démontrons ensuite une version orbifolde du théorème de semi-positivité générique de Y. Miyaoka : est génériquement semi-positif si est pseudo-effectif. Nous en déduisons, à l’aide des résultats récents du PMML, un énoncé conjecturé par E. Viehweg : si est lisse, et si est un diviseur réduit à croisements normaux simples sur tel qu’une puissance tensorielle de contienne un fibré en droites ‘big’, alors est lui-même ‘big’. Les travaux de Viehweg-Zuo impliquent alors la conjecture d’hyperbolicité de V.I. Shafarevich : si une famille algébrique de variétés projectives canoniquement polarisées et paramétrée par une variété quasi-projective irréductible lisse a une ‘variation’ maximale, égale à , alors est de type log-général.
Let be a normal projective manifold, equipped with an effective ‘orbifold’ divisor , such that the pair is log-canonical. We first define the notion of ‘orbifold cotangent bundle’ , living on any suitable ramified cover of . We are then in position to formulate and prove (in a completely different way) an orbifold version of Y. Miyaoka’s generic semi-positivity theorem: is generically semi-positive if is pseudo-effective. Using the deep results of the LMMP, we immediately get a statement conjectured by E. Viehweg: if is smooth, and if is a reduced divisor with simple normal crossings on such that some tensor power of contains the injective image of a big line bundle, then is big.
This implies, by fundamental results of Viehweg-Zuo, the ‘Shafarevich-Viehweg hyperbolicity conjecture’: if an algebraic family of canonically polarized manifolds parametrised by a quasi-projective manifold has ‘maximal variation’, then is of log-general type.
@article{AIF_2015__65_2_835_0, author = {Campana, Fr\'ed\'eric and P\u aun, Mihai}, title = {Orbifold generic semi-positivity: an application to families of canonically polarized manifolds}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {835-861}, doi = {10.5802/aif.2945}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_835_0} }
Campana, Frédéric; Păun, Mihai. Orbifold generic semi-positivity: an application to families of canonically polarized manifolds. Annales de l'Institut Fourier, Tome 65 (2015) pp. 835-861. doi : 10.5802/aif.2945. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_835_0/
[1] Quantitative extensions of pluricanonical forms and closed positive currents, Nagoya Math. J., Tome 205 (2012), pp. 25-65 http://projecteuclid.org/euclid.nmj/1330611001 | Article | MR 2891164 | Zbl 1248.32012
[2] Existence of minimal models for varieties of log general type (http://arxiv.org/abs/math/0610203) | MR 2601039 | Zbl 1210.14019
[3] Rational curves on foliated varieties (IHES preprint IHES/M/01/07.Février 2001.)
[4] Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. (2001) no. 93, pp. 161-221 | Article | Numdam | MR 1863738 | Zbl 1034.14010
[5] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension (http://arxiv.org/abs/math/0405285) | MR 2524080 | Zbl 1267.32017
[6] Special orbifolds and birational classification: a survey (http://arxiv.org/abs/1001.3763)
[7] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 3, pp. 499-630 http://aif.cedram.org/item?id=AIF_2004__54_3_499_0 | Article | Numdam | MR 2097416 | Zbl 1062.14014
[8] Orbifoldes géométriques spéciales et classification biméromorphe des variétés kählériennes compactes, J. Inst. Math. Jussieu, Tome 10 (2011) no. 4, pp. 809-934 | Article | MR 2831280 | Zbl 1236.14039
[9] Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4), Tome 46 (2013) no. 6, pp. 879-916 | MR 3134683
[10] A differential-geometric approach for the generic semi-positivity of orbifold tensor bundles (in preparation)
[11] Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France, Tome 139 (2011) no. 1, pp. 41-74 (With an appendix by Matei Toma) | Numdam | MR 2815027 | Zbl 1218.14030
[12] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 285-360 | Article | MR 1492539 | Zbl 0919.32014
[13] Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Tome 7 (2011) no. 4, Special Issue: In memory of Eckart Viehweg, pp. 1165-1207 | Article | MR 2918158
[14] Lectures on vanishing theorems, Birkhäuser Verlag, Basel, DMV Seminar, Tome 20 (1992), pp. vi+164 | Article | MR 1193913 | Zbl 0779.14003
[15] Cohomological dimension of algebraic varieties, Ann. of Math. (2), Tome 88 (1968), pp. 403-450 | Article | MR 232780 | Zbl 0169.23302
[16] On a conjecture of Beltrametti and Sommese (http://arxiv.org/abs/0912.1295) | Zbl 1253.14007
[17] Positive sheaves of differentials coming from coarse moduli spaces (http://arxiv.org/abs/0904.2445) | Numdam | MR 2976311 | Zbl 1253.14009
[18] Families over special base manifolds and a conjecture of Campana, Math. Z., Tome 269 (2011) no. 3-4, pp. 847-878 | Article | MR 2860268 | Zbl 1238.14024
[19] Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry (Baltimore, MD, 1996), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 207 (1997), pp. 79-88 | Article | MR 1462926 | Zbl 0901.14004
[20] Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 10 (1987), pp. 283-360 | MR 946243 | Zbl 0672.14006
[21] Differential forms on singular spaces, the minimal program, and hyperbolicity of moduli (http://arxiv.org/abs/1107.4239)
[22] Families of canonically polarized varieties over surfaces, Invent. Math., Tome 172 (2008) no. 3, pp. 657-682 | Article | MR 2393082 | Zbl 1140.14031
[23] The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties, Duke Math. J., Tome 155 (2010) no. 1, pp. 1-33 | Article | MR 2730371 | Zbl 1208.14027
[24] Rationally connected foliations after Bogomolov and McQuillan, J. Algebraic Geom., Tome 16 (2007) no. 1, pp. 65-81 | Article | MR 2257320 | Zbl 1120.14011
[25] Lectures on resolution of singularities, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 166 (2007), pp. vi+208 | MR 2289519 | Zbl 1113.14013
[26] Logarithmic orbifold Euler numbers of surfaces with applications (http://arxiv.org/abs/math/0012180) | MR 1971155 | Zbl 1052.14037
[27] Deformations of a morphism along a foliation and applications, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 46 (1987), pp. 245-268 | MR 927960 | Zbl 0659.14008
[28] Algebraic curves over function fields, Dokl. Akad. Nauk SSSR, Tome 183 (1968), pp. 524-526 | MR 236180 | Zbl 0176.50903
[29] Viehweg hyperbolicity conjecture is true over compact bases (http://arxiv.org/abs/1109.2835) | MR 2871152 | Zbl 1235.14031
[30] The isotriviality of families of canonically-polarised manifolds over a special quasi-projective base (http://arxiv.org/abs/1310.5391)
[31] Base spaces of non-isotrivial families of smooth minimal models, Complex geometry (Göttingen, 2000), Springer, Berlin (2002), pp. 279-328 | MR 1922109 | Zbl 1006.14004
[32] Curvature and Betti numbers, Princeton University Press, Princeton, N. J., Annals of Mathematics Studies, No. 32 (1953), pp. ix+190 | MR 62505 | Zbl 0051.39402
[33] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059