On donne la définition et des caractérisations de suites régulières dans les immeubles affines. Ce faisant, on obtient l’analogue -adique du travail fondamental de Kaimanovich sur les suites régulières dans les espaces symétriques. Comme application, nous démontrons des théorèmes limite pour des marches aléatoires dans les immeubles affines et leurs groupes d’automorphismes.
We define and characterise regular sequences in affine buildings, thereby giving the -adic analogue of the fundamental work of Kaimanovich on regular sequences in symmetric spaces. As applications we prove limit theorems for random walks on affine buildings and their automorphism groups.
@article{AIF_2015__65_2_675_0, author = {Parkinson, James and Woess, Wolfgang}, title = {Regular sequences and random walks in affine buildings}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {675-707}, doi = {10.5802/aif.2941}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_675_0} }
Parkinson, James; Woess, Wolfgang. Regular sequences and random walks in affine buildings. Annales de l'Institut Fourier, Tome 65 (2015) pp. 675-707. doi : 10.5802/aif.2941. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_675_0/
[1] Buildings, Springer, New York, Graduate Texts in Mathematics, Tome 248 (2008), pp. xxii+747 (Theory and applications) | Article | MR 2439729 | Zbl 1214.20033
[2] Lie groups and Lie algebras. Chapters 4–6, Springer-Verlag, Berlin, Elements of Mathematics (Berlin) (2002), pp. xii+300 (Translated from the 1968 French original by Andrew Pressley) | Article | MR 1890629 | Zbl 0672.22001
[3] Metric spaces of non-positive curvature, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 319 (1999), pp. xxii+643 | Article | MR 1744486 | Zbl 0988.53001
[4] Renewal theory on the affine group of an oriented tree, J. Theoret. Probab., Tome 17 (2004) no. 4, pp. 819-859 | Article | MR 2105737 | Zbl 1065.60123
[5] Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972) no. 41, pp. 5-251 | Article | Numdam | MR 327923 | Zbl 0254.14017
[6] Simple groups of Lie type, John Wiley & Sons, London-New York-Sydney (1972), pp. viii+331 (Pure and Applied Mathematics, Vol. 28) | MR 407163 | Zbl 0723.20006
[7] Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble), Tome 44 (1994) no. 4, pp. 1243-1288 | Article | Numdam | MR 1306556 | Zbl 0809.60010
[8] Isotropic random walks in a building of type , Math. Z., Tome 247 (2004) no. 1, pp. 101-135 | Article | MR 2054522 | Zbl 1060.60070
[9] Buildings and their applications in geometry and topology, Asian J. Math., Tome 10 (2006) no. 1, pp. 11-80 | Article | MR 2213684 | Zbl 1163.22010
[10] Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Tome 164 (1987) no. Differentsialnaya Geom. Gruppy Li i Mekh. IX, p. 29-46, 196–197 | Article | MR 947327 | Zbl 0696.22012
[11] On laws of large numbers for random walks, Ann. Probab., Tome 34 (2006) no. 5, pp. 1693-1706 | Article | MR 2271477 | Zbl 1111.60005
[12] A multiplicative ergodic theorem and nonpositively curved spaces, Comm. Math. Phys., Tome 208 (1999) no. 1, pp. 107-123 | Article | MR 1729880 | Zbl 0979.37006
[13] Limit theorems for isotropic random walks on triangle buildings, J. Aust. Math. Soc., Tome 73 (2002) no. 3, pp. 301-333 | Article | MR 1936256 | Zbl 1028.60005
[14] Spherical functions on a group of -adic type, Ramanujan Institute, Centre for Advanced Study in Mathematics,University of Madras, Madras (1971), pp. vii+79 (Publications of the Ramanujan Institute, No. 2) | MR 435301 | Zbl 0302.43018
[15] A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč., Tome 19 (1968), pp. 179-210 | MR 240280 | Zbl 0236.93034
[16] Buildings and Hecke algebras, J. Algebra, Tome 297 (2006) no. 1, pp. 1-49 | Article | MR 2206366 | Zbl 1095.20003
[17] Spherical harmonic analysis on affine buildings, Math. Z., Tome 253 (2006) no. 3, pp. 571-606 | Article | MR 2221087 | Zbl 1171.43009
[18] Isotropic random walks on affine buildings, Ann. Inst. Fourier (Grenoble), Tome 57 (2007) no. 2, pp. 379-419 http://aif.cedram.org/item?id=AIF_2007__57_2_379_0 | Article | Numdam | MR 2310945 | Zbl 1177.60046
[19] A local limit theorem for random walks on the chambers of buildings, Random walks, boundaries and spectra, Birkhäuser/Springer Basel AG, Basel (Progr. Probab.) Tome 64 (2011), pp. 15-53 | Article | MR 3051691 | Zbl 1245.60031
[20] A construction of buildings with no rank residues of spherical type, Buildings and the geometry of diagrams (Como, 1984), Springer, Berlin (Lecture Notes in Math.) Tome 1181 (1986), pp. 242-248 | Article | MR 843395 | Zbl 0588.51015
[21] Lectures on buildings, University of Chicago Press, Chicago, IL (2009), pp. xiv+228 (Updated and revised) | MR 2560094 | Zbl 1190.51008
[22] Isotropic random walks in a tree, Z. Wahrsch. Verw. Gebiete, Tome 42 (1978) no. 4, pp. 279-292 | Article | MR 491493 | Zbl 0362.60075
[23] Random walk on a building of type and Brownian motion of the Weyl chamber, Ann. Inst. Henri Poincaré Probab. Stat., Tome 45 (2009) no. 2, pp. 289-301 | Article | Numdam | MR 2521404 | Zbl 1218.60003
[24] Lectures on Chevalley groups, Yale University, New Haven, Conn. (1968), pp. iii+277 (Notes prepared by John Faulkner and Robert Wilson) | MR 466335 | Zbl 1196.22001
[25] Buildings of spherical type and finite BN-pairs, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Vol. 386 (1974), pp. x+299 | MR 470099 | Zbl 0295.20047
[26] Immeubles de type affine, Buildings and the geometry of diagrams (Como, 1984), Springer, Berlin (Lecture Notes in Math.) Tome 1181 (1986), pp. 159-190 | Article | MR 843391 | Zbl 0611.20026
[27] A local limit theorem on certain -adic groups and buildings, Monatsh. Math., Tome 133 (2001) no. 2, pp. 163-173 | Article | MR 1860298 | Zbl 1005.60018
[28] The structure of affine buildings, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 168 (2009), pp. xii+368 | MR 2468338 | Zbl 1166.51001