Dans cet article, nous considérons un -analogue du processus de sommation de Borel-Laplace, avec paramètre réel. En particulier, nous prouvons que la sommation de Borel-Laplace d’une série formelle solution d’une équation différentielle linéaire peut être approchée, dans un secteur convenable, par une solution méromorphe d’une certaine famille d’équations aux -différences linéaire. Nous faisons les calculs pour les séries hypergéométriques. En s’inspirant de Sauloy, nous prouvons comment une base de solutions d’une equation différentielle linéaire peut être approchée, sur un secteur convenable, par une base de solutions d’une famille correspondante d’équations aux -différences. Cela nous mène à l’approximation des matrices de Stokes et de monodromies de l’équation différentielle, par des matrices dont les entrées sont invariantes par multiplication par .
In this paper, we consider a -analogue of the Borel-Laplace summation where is a real parameter. In particular, we show that the Borel-Laplace summation of a divergent power series solution of a linear differential equation can be uniformly approximated on a convenient sector, by a meromorphic solution of a corresponding family of linear -difference equations. We perform the computations for the basic hypergeometric series. Following Sauloy, we prove how a basis of solutions of a linear differential equation can be uniformly approximated on a convenient domain by a basis of solutions of a corresponding family of linear -difference equations. This leads us to the approximations of Stokes matrices and monodromy matrices of the linear differential equation by matrices with entries that are invariants by the multiplication by .
@article{AIF_2015__65_2_431_0, author = {Dreyfus, Thomas}, title = {Confluence of meromorphic solutions of~$q$-difference equations}, journal = {Annales de l'Institut Fourier}, volume = {65}, year = {2015}, pages = {431-507}, doi = {10.5802/aif.2937}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2015__65_2_431_0} }
Dreyfus, Thomas. Confluence of meromorphic solutions of $q$-difference equations. Annales de l'Institut Fourier, Tome 65 (2015) pp. 431-507. doi : 10.5802/aif.2937. http://gdmltest.u-ga.fr/item/AIF_2015__65_2_431_0/
[1] Linear -difference equations, Bull. Amer. Math. Soc., Tome 37 (1931) no. 6, pp. 361-400 | Article | MR 1562160 | Zbl 0002.19103
[2] Séries Gevrey de type arithmétique. II. Transcendance sans transcendance, Ann. of Math. (2), Tome 151 (2000) no. 2, pp. 741-756 | Article | MR 1765708 | Zbl 1037.11050
[3] Special functions, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 71 (1999), pp. xvi+664 | MR 1688958 | Zbl 0920.33001
[4] From divergent power series to analytic functions, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1582 (1994), pp. x+108 (Theory and application of multisummable power series) | MR 1317343 | Zbl 0810.34046
[5] Groupes algébriques et équations différentielles linéaires, Astérisque (1992) no. 206, pp. Exp. No. 750, 4, 183-204 (Séminaire Bourbaki, Vol. 1991/92) | Numdam | MR 1206068 | Zbl 0813.12004
[6] Sur les équations fonctionnelles aux -différences, Aequationes Math., Tome 43 (1992) no. 2-3, pp. 159-176 | Article | MR 1158724 | Zbl 0757.39002
[7] The General Theory of Linear -Difference Equations, Amer. J. Math., Tome 34 (1912) no. 2, pp. 147-168 | Article | MR 1506145
[8] On integral representations of -gamma and -beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Tome 16 (2005) no. 1, pp. 11-29 | MR 2225920 | Zbl 1225.33017
[9] Équations aux -différences, Gaz. Math. (2003) no. 96, pp. 20-49 | MR 1988639 | Zbl 1063.39015
[10] Arithmetic theory of -difference equations: the -analogue of Grothendieck-Katz’s conjecture on -curvatures, Invent. Math., Tome 150 (2002) no. 3, pp. 517-578 | Article | MR 1946552 | Zbl 1023.12004
[11] Local analytic classification of -difference equations with , J. Noncommut. Geom., Tome 3 (2009) no. 1, pp. 125-149 | Article | MR 2457039 | Zbl 1168.39002
[12] Descent for differential Galois theory of difference equations: confluence and -dependence, Pacific J. Math., Tome 256 (2012) no. 1, pp. 79-104 | Article | MR 2928542 | Zbl 1258.12004
[13] On -summation and confluence, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 1, pp. 347-392 | Article | Numdam | MR 2514868 | Zbl 1175.34111
[14] Familles fuchsiennes d’équations aux (-)différences et confluence, Bull. Soc. Math. France, Tome 136 (2008) no. 1, pp. 67-96 | Numdam | MR 2415336 | Zbl 1168.39003
[15] Stokes phenomenon for the prolate spheroidal wave equation, Appl. Numer. Math., Tome 60 (2010) no. 12, pp. 1309-1319 | Article | MR 2735163 | Zbl 1213.34113
[16] Automatic computation of Stokes matrices, Numer. Algorithms, Tome 50 (2009) no. 2, pp. 179-213 | Article | MR 2487235 | Zbl 1167.65391
[17] Basic hypergeometric series, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 96 (2004), pp. xxvi+428 (With a foreword by Richard Askey) | MR 2128719 | Zbl 1129.33005
[18] Around the numeric-symbolic computation of differential Galois groups, J. Symbolic Comput., Tome 42 (2007) no. 1-2, pp. 236-264 | Article | MR 2284295
[19] The convenient setting of global analysis, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 53 (1997), pp. x+618 | MR 1471480 | Zbl 0889.58001
[20] Introduction à la multisommabilité, Gaz. Math. (1990) no. 44, pp. 41-63 | Zbl 0722.34005
[21] Solutions formelles des systèmes différentiels linéaires méromorphes et sommation, Exposition. Math., Tome 13 (1995) no. 2-3, pp. 116-162 | MR 1346200 | Zbl 0831.34002
[22] Resurgence, Stokes phenomenon and alien derivatives for level-one linear differential systems, J. Differential Equations, Tome 250 (2011) no. 3, pp. 1591-1630 | Article | MR 2737219 | Zbl 1214.34087
[23] Fonctions multisommables, Ann. Inst. Fourier (Grenoble), Tome 42 (1992) no. 1-2, pp. 353-368 | Article | Numdam | MR 1162566 | Zbl 0759.34007
[24] Sommation des séries divergentes, Exposition. Math., Tome 13 (1995) no. 2-3, pp. 163-222 | MR 1346201 | Zbl 0836.40004
[25] Multisommabilité des séries entières solutions formelles d’une équation aux -différences linéaire analytique, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 6, p. 1859-1890 (2001) | Article | Numdam | MR 1817385 | Zbl 1063.39001
[26] Théorie de Galois différentielle et resommation, Computer algebra and differential equations, Academic Press, London (Comput. Math. Appl.) (1990), pp. 117-214 | MR 1038060 | Zbl 0722.12007
[27] Autour de l’évaluation numérique des fonctions D-finies. Thèse de doctorat., Ecole polytechnique (2001) (Ph. D. Thesis)
[28] Effective bounds for P-recursive sequences, J. Symbolic Comput., Tome 45 (2010) no. 10, pp. 1075-1096 | Article | MR 2679389 | Zbl 1201.65219
[29] Galois theory of -difference equations, Ann. Fac. Sci. Toulouse Math. (6), Tome 16 (2007) no. 3, pp. 665-718 | Article | Numdam | MR 2379057 | Zbl 1213.39011
[30] Galois theory of linear differential equations, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 328 (2003), pp. xviii+438 | MR 1960772 | Zbl 1036.12008
[31] Local analytic classification of q-difference equations. To appear in Astérisque. (http://arxiv.org/abs/0903.0853) | MR 3185985
[32] About the growth of entire functions solutions of linear algebraic -difference equations, Ann. Fac. Sci. Toulouse Math. (6), Tome 1 (1992) no. 1, pp. 53-94 | Article | Numdam | MR 1191729 | Zbl 0796.39005
[33] Séries divergentes et théories asymptotiques, Bull. Soc. Math. France, Tome 121 (1993) no. Panoramas et Syntheses, suppl., pp. 74 | MR 1272100 | Zbl 0830.34045
[34] Développement asymptotique -Gevrey et fonction thêta de Jacobi, C. R. Math. Acad. Sci. Paris, Tome 335 (2002) no. 11, pp. 899-902 | Article | MR 1952546 | Zbl 1025.39014
[35] Matrices de Stokes-Ramis et constantes de connexion pour les systèmes différentiels linéaires de niveau unique, Ann. Fac. Sci. Toulouse Math. (6), Tome 21 (2012) no. 1, pp. 93-150 | Article | MR 2954106 | Zbl 1244.34109
[36] Classification rationnelle et confluence des systèmes aux différences singuliers réguliers, Ann. Inst. Fourier (Grenoble), Tome 56 (2006) no. 6, pp. 1663-1699 | Article | Numdam | MR 2282672 | Zbl 1125.39019
[37] Galois groups of the basic hypergeometric equations, Pacific J. Math., Tome 235 (2008) no. 2, pp. 303-322 | Article | MR 2386226 | Zbl 1153.39026
[38] Generalized basic hypergeometric equations, Invent. Math., Tome 184 (2011) no. 3, pp. 499-528 | Article | MR 2800693 | Zbl 1241.33017
[39] Systèmes aux -différences singuliers réguliers: classification, matrice de connexion et monodromie, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 4, pp. 1021-1071 | Article | Numdam | MR 1799737 | Zbl 0957.05012
[40] Introduction to the Galois theory of linear differential equations, Algebraic theory of differential equations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 357 (2009), pp. 1-82 | MR 2484905 | Zbl 1176.12005
[41] Analytic theory of linear -difference equations, Acta Math., Tome 61 (1933) no. 1, pp. 1-38 | Article | MR 1555369 | Zbl 0007.21103
[42] Développements asymptotiques -Gevrey et séries -sommables, Ann. Inst. Fourier (Grenoble), Tome 49 (1999) no. 1, p. vi-vii, x, 227–261 | Article | Numdam | MR 1688144 | Zbl 0974.39009
[43] Transformations de -Borel-Laplace au moyen de la fonction thêta de Jacobi, C. R. Acad. Sci. Paris Sér. I Math., Tome 331 (2000) no. 1, pp. 31-34 | Article | MR 1780181 | Zbl 1101.33307
[44] Sur la fonction -gamma de Jackson, Aequationes Math., Tome 62 (2001) no. 1-2, pp. 60-78 | Article | MR 1849140 | Zbl 0990.39018
[45] Une sommation discrète pour des équations aux -différences linéaires et à coefficients analytiques: théorie générale et exemples, Differential equations and the Stokes phenomenon, World Sci. Publ., River Edge, NJ (2002), pp. 309-329 | MR 2067338 | Zbl 1041.39013
[46] Sur les fonctions -Bessel de Jackson, J. Approx. Theory, Tome 122 (2003) no. 2, pp. 208-223 | Article | MR 1988300 | Zbl 1023.33012