On the torsion of the first direct image of a locally free sheaf
[Sur la torsion de la première image directe d’un faisceau localement libre]
Teleman, Andrei
Annales de l'Institut Fourier, Tome 65 (2015), p. 101-136 / Harvested from Numdam

Soit π:MB un submersion propre entre variétés complexes, et soit un fibré holomorphe sur M. Nous étudions et décrivons explicitement le sous-faisceau de torsion Tors(R 1 π * ()) de la première image directe R 1 π * () en supposant que R 0 π * ()=0. Nous discutons deux applications des résultats obtenus  : la première concerne le lieu des points où une famille génériquement verselle de surfaces complexes est non-verselle. La deuxième application est un résultat d’annulation pour H 0 (Tors(R 1 π * ())) dans une situation concrète liée à notre programme pour démontrer l’existence des courbes sur les surfaces de la classe VII.

Let π:MB be a proper holomorphic submersion between complex manifolds and a holomorphic bundle on M. We study and describe explicitly the torsion subsheaf Tors(R 1 π * ()) of the first direct image R 1 π * () under the assumption R 0 π * ()=0. We give two applications of our results. The first concerns the locus of points in the base of a generically versal family of complex surfaces where the family is non-versal. The second application is a vanishing result for H 0 (Tors(R 1 π * ())) in a concrete situation related to our program to prove existence of curves on class VII surfaces.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/aif.2926
Classification:  32C35,  32G05,  32J15
Mots clés: Faisceaux cohérents, images directes supérieures, surfaces complexes, déformation verselle, sous-faisceau de torsion
@article{AIF_2015__65_1_101_0,
     author = {Teleman, Andrei},
     title = {On the torsion of the first direct image of a locally free sheaf},
     journal = {Annales de l'Institut Fourier},
     volume = {65},
     year = {2015},
     pages = {101-136},
     doi = {10.5802/aif.2926},
     zbl = {06496535},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2015__65_1_101_0}
}
Teleman, Andrei. On the torsion of the first direct image of a locally free sheaf. Annales de l'Institut Fourier, Tome 65 (2015) pp. 101-136. doi : 10.5802/aif.2926. http://gdmltest.u-ga.fr/item/AIF_2015__65_1_101_0/

[1] Bănică, Constantin; Stănăşilă, Octavian Algebraic methods in the global theory of complex spaces, Editura Academiei, Bucharest; John Wiley & Sons, London-New York-Sydney (1976), pp. 296 (Translated from the Romanian) | MR 463470 | Zbl 0334.32001

[2] Barth, Wolf P.; Hulek, Klaus; Peters, Chris A. M.; Van De Ven, Antonius Compact complex surfaces, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 4 (2004), pp. xii+436 | MR 2030225 | Zbl 1036.14016

[3] Bingener, Jürgen Offenheit der Versalität in der analytischen Geometrie, Math. Z., Tome 173 (1980) no. 3, pp. 241-281 | Article | MR 592373 | Zbl 0493.32020

[4] Bourbaki, N. Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, Springer-Verlag, Berlin (2007), pp. viii+216 (Reprint of the 1980 original) | Zbl 1105.18001

[5] Demailly, J.-P. Complex Analytic and Differential Geometry (www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)

[6] Dloussky, Georges Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.) (1984) no. 14, pp. ii+120 | Numdam | MR 763959 | Zbl 0543.32012

[7] Dloussky, Georges From non-Kählerian surfaces to Cremona group of 2 (), Complex Manifolds, Tome 1 (2014) no. Issue 1, pp. 1-33 | MR 3333465

[8] Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Class VII 0 surfaces with b 2 curves, Tohoku Math. J. (2), Tome 55 (2003) no. 2, pp. 283-309 | Article | MR 1979500 | Zbl 1034.32012

[9] Douady, A. Le problème des modules locaux pour les espaces -analytiques compacts, Ann. Sci. École Norm. Sup. (4), Tome 7 (1974), pp. 569-602 | Numdam | MR 382729 | Zbl 0313.32036

[10] Douady, A.; Verdier, J. L. Sém. Géom. Anal. (1974) (École Norm. Sup., 1971–1972, Astérisque 16, Soc. Math. France, Paris) | MR 466614

[11] Eisenbud, David; Levine, Harold I. An algebraic formula for the degree of a C map germ, Ann. of Math. (2), Tome 106 (1977) no. 1, pp. 19-44 | Article | MR 467800 | Zbl 0398.57020

[12] Enoki, Ichiro Surfaces of class VII 0 with curves, Tôhoku Math. J. (2), Tome 33 (1981) no. 4, pp. 453-492 | Article | MR 643229 | Zbl 0476.14013

[13] Fantechi, Barbara Stacks for everybody, European Congress of Mathematics, Vol. I (Barcelona, 2000), Birkhäuser, Basel (Progr. Math.) Tome 201 (2001), pp. 349-359 | MR 1905329 | Zbl 1021.14003

[14] Fischer, Gerd Complex analytic geometry, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Vol. 538 (1976), pp. vii+201 | MR 430286 | Zbl 0343.32002

[15] Flenner, Hubert Ein Kriterium für die Offenheit der Versalität, Math. Z., Tome 178 (1981) no. 4, pp. 449-473 | Article | MR 638811 | Zbl 0453.14002

[16] Godement, Roger Topologie algébrique et théorie des faisceaux, Hermann, Paris (1973), pp. viii+283 | MR 345092 | Zbl 0275.55010

[17] Grauert, Hans; Remmert, Reinhold Coherent analytic sheaves, Springer-Verlag, Berlin Tome 265 (1984), pp. xviii+249 | MR 755331 | Zbl 0537.32001

[18] Hoffmann, Norbert The moduli stack of vector bundles on a curve, Teichmüller theory and moduli problem, Ramanujan Math. Soc., Mysore (Ramanujan Math. Soc. Lect. Notes Ser.) Tome 10 (2010), pp. 387-394 | MR 2667562 | Zbl 1204.14015

[19] Kaup, Ludger; Kaup, Burchard Holomorphic functions of several variables, Walter de Gruyter & Co., Berlin, de Gruyter Studies in Mathematics, Tome 3 (1983), pp. xv+349 | MR 716497 | Zbl 0528.32001

[20] Kobayashi, Shoshichi Differential geometry of complex vector bundles, Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo Tome 15 (1987), pp. xii+305 | MR 909698 | Zbl 0708.53002

[21] Kodaira, K.; Spencer, D. C. A theorem of completeness for complex analytic fibre spaces, Acta Math., Tome 100 (1958), pp. 281-294 | Article | MR 112155 | Zbl 0124.16502

[22] Lübke, Martin; Teleman, Andrei The Kobayashi-Hitchin correspondence, World Scientific Publishing Co., Inc., River Edge, NJ (1995), pp. x+254 | MR 1370660 | Zbl 0849.32020

[23] Meersseman, L. The Teichmüller and Riemann spaces as analytic stacks and groupoids (2013) (preprint arXiv:1311.4170)

[24] Nakamura, Iku On surfaces of class VII 0 with curves, Invent. Math., Tome 78 (1984) no. 3, pp. 393-443 | Article | MR 768987 | Zbl 0575.14033

[25] Nakamura, Iku Towards classification of non-Kählerian surfaces, Sugaku Expositions, Tome 2 (1989) no. 2, pp. 209-229 | Zbl 0685.14020

[26] Nakamura, Iku On surfaces of class VII 0 with curves, II, Tôhuku Mathematical Journal, Tome 42 (1990) no. 4, pp. 475-516 | Article | MR 1076173 | Zbl 0732.14019

[27] Oeljeklaus, Karl; Toma, Matei Logarithmic moduli spaces for surfaces of class VII, Math. Ann., Tome 341 (2008) no. 2, pp. 323-345 | Article | MR 2385660 | Zbl 1144.32004

[28] Remmert, R. Local theory of complex spaces, Several complex variables, VII, Springer, Berlin (Encyclopaedia Math. Sci.) Tome 74 (1994), pp. 7-96 | MR 1326618 | Zbl 0808.32008

[29] Teleman, Andrei A variation formula for the determinant line bundle. Compact subspaces of moduli spaces of stable bundles over class VII surfaces (arXiv:1309.0350 [math.CV])

[30] Teleman, Andrei Donaldson theory on non-Kählerian surfaces and class VII surfaces with b 2 =1, Invent. Math., Tome 162 (2005) no. 3, pp. 493-521 | Article | MR 2198220 | Zbl 1093.32006

[31] Teleman, Andrei The pseudo-effective cone of a non-Kählerian surface and applications, Math. Ann., Tome 335 (2006) no. 4, pp. 965-989 | Article | MR 2232025 | Zbl 1096.32011

[32] Teleman, Andrei Gauge theoretical methods in the classification of non-Kählerian surfaces, Algebraic topology—old and new (the Postnikov Memorial Volume), Polish Acad. Sci. Inst. Math., Warsaw (Banach Center Publ.) Tome 85 (2009), pp. 109-120 | MR 2503522 | Zbl 1185.32014

[33] Teleman, Andrei Instantons and holomorphic curves on class VII surfaces, Ann. of Math. (2), Tome 172 (2010) no. 3, pp. 1749-1804 | Article | MR 2726099 | Zbl 1231.14028

[34] Teleman, Andrei Dumitru Projectively flat surfaces and Bogomolov’s theorem on class VII 0 surfaces, Internat. J. Math., Tome 5 (1994) no. 2, pp. 253-264 | Article | MR 1266285 | Zbl 0803.53038