Soit un faisceau cohérent d’ideaux sur un variété complexe lisse , et soit la variété de . Soit une fonction plurisousharmonique telle que localement sur , où est un -uple de fonctions holomorphes qui définit . Nous donnons un sens au produit de Monge-Ampère pour , et nous montrons que les nombres de Lelong des courants en coïncident avec les nombres de Segre de en , introduits indépendemment par Tworzewski, Gaffney-Gassler et Achilles-Manaresi. Plus généralement, nous montrons que les satisfont une certaine généralisation de la formule de King.
Let be a coherent ideal sheaf on a complex manifold with zero set , and let be a plurisubharmonic function such that locally at , where is a tuple of holomorphic functions that defines . We give a meaning to the Monge-Ampère products for , and prove that the Lelong numbers of the currents at coincide with the so-called Segre numbers of at , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that satisfy a certain generalization of the classical King formula.
@article{AIF_2014__64_6_2639_0, author = {Andersson, Mats and Wulcan, Elizabeth}, title = {Green functions, Segre numbers, and King's formula}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {2639-2657}, doi = {10.5802/aif.2922}, zbl = {06387349}, mrnumber = {3331176}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_6_2639_0} }
Andersson, Mats; Wulcan, Elizabeth. Green functions, Segre numbers, and King’s formula. Annales de l'Institut Fourier, Tome 64 (2014) pp. 2639-2657. doi : 10.5802/aif.2922. http://gdmltest.u-ga.fr/item/AIF_2014__64_6_2639_0/
[1] Multiplicities of bigraded And Intersection theory, Math. Ann., Tome 309 (1997), pp. 573-591 | Article | MR 1483824 | Zbl 0894.14005
[2] Intersection numbers, Segre numbers and generalized Samuel multiplicities, Arch. Math. (Basel), Tome 77 (2001), pp. 391-398 | Article | MR 1858883 | Zbl 1032.13012
[3] Residue currents of holomorphic sections and Lelong currents, Arkiv för matematik, Tome 43 (2005), pp. 201-219 | Article | MR 2172988 | Zbl 1103.32020
[4] Segre numbers, a generalized King formula, and local intersections (arXiv:1009.2458v3)
[5] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982) no. 1–2, pp. 1-40 | Article | MR 674165 | Zbl 0547.32012
[6] Fine topology, Šilov boundary, and , J. Funct. Anal., Tome 72 (1987) no. 2, pp. 225-251 | Article | MR 886812 | Zbl 0677.31005
[7]
(2012) (Personal communication)[8] Monge-Ampère equations in big cohomology classes, Acta Math., Tome 205 (2010), pp. 199-262 | Article | MR 2746347 | Zbl 1213.32025
[9] Complex and Differential geometry (available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[10] Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z., Tome 194 (1987) no. 4, pp. 519-564 | Article | MR 881709 | Zbl 0595.32006
[11] Monge-Ampère Operators, Lelong Numbers, and Intersection Theory, Complex analysis and geometry, Plenum, New York (Univ. Ser. Math.) (1993), pp. 115-193 | MR 1211880 | Zbl 0792.32006
[12] A sharp lower bound for the log canonical threshold, Acta Math., Tome 212 (2014), pp. 1-9 | Article | MR 3179606
[13] Intersection theory, Springer-Verlag, Berlin-Heidelberg (1998) | MR 1644323 | Zbl 0541.14005
[14] Segre numbers and hypersurface singularities, J. Algebraic Geom., Tome 8 (1999), pp. 695-736 | MR 1703611 | Zbl 0971.13021
[15] A residue formula for complex subvarieties, Proc. Carolina conf. on holomoprhic mappings and minimal surfaces, Univ. of North Carolina, Chapel Hill (1970), pp. 43-56 | MR 273061 | Zbl 0224.32009
[16] Positivity in Algebraic Geometry II. Positivity for vector bundles, and multiplier ideals, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Tome 49 (2004) | MR 2095472 | Zbl 1093.14500
[17] Lê cycles and hypersurface singularities, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1615 (1995), pp. xii+131 | MR 1441075 | Zbl 0835.32002
[18] Numerical control over complex analytic singularities, Mem. Amer. Math. Soc., Tome 163 (2003) no. 778, pp. xii+268 | Article | MR 1962934 | Zbl 1025.32010
[19] Multi-circled Singularities, Lelong Numbers, and Integrability Index, J. Geom. Anal., Tome 23 (2013), pp. 1976-1992 | Article | MR 3107686 | Zbl 1282.32013
[20] Green functions with singularities along complex spaces, Internat. J. Math., Tome 16 (2005), pp. 333-355 | Article | MR 2133260 | Zbl 1085.32018
[21] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., Tome 27 (1974), pp. 53-156 | Article | MR 352516 | Zbl 0289.32003
[22] Sous-ensembles analytiques d’ordre fini ou infini dans , Bull. Soc. Math. France, Tome 100 (1972), pp. 353-408 | Numdam | MR 352517 | Zbl 0246.32009
[23] An algebraic approach to the intersection theory, Queen’s Papers in Pure and Appl. Math., Tome 61 (1982), pp. 1-32 | MR 783085 | Zbl 0599.14003
[24] Intersection theory in complex analytic geometry, Ann. Polon. Math., Tome 62 (1995), pp. 177-191 | MR 1356791 | Zbl 0911.32018