Nous obtenons l’interpolation de la connexion de Gauss–Manin en familles -adiques de formes modulaires quasi-surconvergentes. Ceci donne une famille d’opérateurs différentiels à la Maass–Shimura qui envoie l’espace de formes modulaires quasi-surconvergentes de type dans celui de formes modulaires quasi-surconvergentes de type et de poids -adique augmenté par . Notre méthode est purement géométrique, elle utlise les constructions géométriques des courbes de Hecke dues à Andreatta–Iovita–Stevens et Pilloni, et devrait donc se généraliser aux groupes de rang supérieur.
We interpolate the Gauss–Manin connection in -adic families of nearly overconvergent modular forms. This gives a family of Maass–Shimura type differential operators from the space of nearly overconvergent modular forms of type to the space of nearly overconvergent modular forms of type with -adic weight shifted by . Our construction is purely geometric, using Andreatta–Iovita–Stevens and Pilloni’s geometric construction of eigencurves, and should thus generalize to higher rank groups.
@article{AIF_2014__64_6_2449_0, author = {Harron, Robert and Xiao, Liang}, title = {Gauss--Manin connections for $p$-adic families of nearly overconvergent modular forms}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {2449-2464}, doi = {10.5802/aif.2916}, zbl = {06387343}, mrnumber = {3331170}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_6_2449_0} }
Harron, Robert; Xiao, Liang. Gauss–Manin connections for $p$-adic families of nearly overconvergent modular forms. Annales de l'Institut Fourier, Tome 64 (2014) pp. 2449-2464. doi : 10.5802/aif.2916. http://gdmltest.u-ga.fr/item/AIF_2014__64_6_2449_0/
[1] On overconvergent modular sheaves and modular forms for (preprint, to appear in Israel J. Math., doi:10.1007/s11856-014-1045-8)
[2] -adic families of Siegel modular cuspforms (to appear in Ann. of Math.) | Zbl 06399445
[3] Eigenvarieties, -functions and Galois representations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 320 (2007), pp. 59-120 | MR 2367390 | Zbl 1230.11054
[4] , , and overconvergence, Int. Math. Res. Not. (1995) no. 1, pp. 23-41 | Article | MR 1317641 | Zbl 0846.11027
[5] Diagonal cycles and Euler systems I: A -adic Gross–Zagier formula (to appear in Ann. Sci. Éc. Norm. Supér. (4)) | Zbl 1356.11039
[6] La filtration de Harder–Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Tome 645 (2010), pp. 1-39 | Article | MR 2673421 | Zbl 1199.14015
[7] -adic properties of modular schemes and modular forms, Modular functions of one variable, III, Springer, Berlin (Lecture Notes in Mathematics) Tome 350 (1973), pp. 69-190 | MR 447119 | Zbl 0271.10033
[8] Overconvergent modular forms, Ann. Inst. Fourier, Tome 63 (2013) no. 1, pp. 219-239 | Article | Numdam | MR 3097946 | Zbl 1316.11034
[9] Nearly overconvergent modular forms (to appear in the Proceedings of conference IWASAWA 2012 held at Heidelberg, available at http://www.math.columbia.edu/~urban/EURP.html) | Zbl 1328.11052
[10] On the rank of Selmer groups for elliptic curves over , Automorphic representations and -functions, Tata Inst. Fund. Res., Mumbai (Tata Inst. Fundam. Res. Stud. Math.) Tome 22 (2013), pp. 651-680 | MR 3156865