On établit l’isomorphisme de dualité étrange pour toutes les surfaces constituant un diviseur de Noether-Lefschetz dans l’espace de modules de surfaces quasipolarisées. On interprète le résultat d’une manière globale, comme un isomorphisme de faisceaux à travers ce diviseur, et on décrit aussi la construction globale sur l’espace de modules des surfaces polarisées.
We extend results on generic strange duality for surfaces by showing that the proposed isomorphism holds over an entire Noether-Lefschetz divisor in the moduli space of quasipolarized s. We interpret the statement globally as an isomorphism of sheaves over this divisor, and also describe the global construction over the space of polarized .
@article{AIF_2014__64_5_2067_0, author = {Marian, Alina and Oprea, Dragos}, title = {On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {2067-2086}, doi = {10.5802/aif.2904}, zbl = {06387331}, mrnumber = {3330931}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_5_2067_0} }
Marian, Alina; Oprea, Dragos. On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors. Annales de l'Institut Fourier, Tome 64 (2014) pp. 2067-2086. doi : 10.5802/aif.2904. http://gdmltest.u-ga.fr/item/AIF_2014__64_5_2067_0/
[1] Compact complex surfaces, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 4 (1984), pp. x+304 | Article | MR 749574 | Zbl 1036.14016
[2] The Euclid-Fourier-Mukai algorithm for elliptic surfaces (arXiv:1002.4986, to appear in Asian J. Math.)
[3] Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math., Tome 498 (1998), pp. 115-133 | Article | MR 1629929 | Zbl 0905.14020
[4] Derived categories of twisted sheaves on Calabi-Yau manifolds, ProQuest LLC, Ann Arbor, MI (2000), pp. 196 (Thesis (Ph.D.)–Cornell University) | MR 2700538
[5] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom., Tome 10 (2001) no. 1, pp. 81-100 | MR 1795551 | Zbl 0976.14002
[6] Algebraic surfaces and holomorphic vector bundles, Springer-Verlag, New York, Universitext (1998), pp. x+328 | Article | MR 1600388 | Zbl 0902.14029
[7] Note on tautological classes of moduli of surfaces, Mosc. Math. J., Tome 5 (2005) no. 4, p. 775-779, 972 | MR 2266459 | Zbl 1124.14011
[8] Relative integral functors for singular fibrations and singular partners, J. Eur. Math. Soc., Tome 11 (2009), pp. 597-625 | Article | MR 2505443 | Zbl 1221.18010
[9] Birational symplectic manifolds and their deformations, J. Differential Geom., Tome 45 (1997) no. 3, pp. 488-513 http://projecteuclid.org/euclid.jdg/1214459840 | MR 1472886 | Zbl 0917.53010
[10] Fibré déterminant et courbes de saut sur les surfaces algébriques, Complex projective geometry (Trieste, 1989/Bergen, 1989), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 179 (1992), pp. 213-240 | Article | MR 1201385 | Zbl 0788.14045
[11] Dualité étrange sur le plan projectif (1996) (Luminy)
[12] Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom., Tome 37 (1993) no. 2, pp. 417-466 http://projecteuclid.org/euclid.jdg/1214453683 | MR 1205451 | Zbl 0809.14006
[13] A tour of theta dualities on moduli spaces of sheaves, Curves and abelian varieties, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 465 (2008), pp. 175-201 | Article | MR 2457738 | Zbl 1149.14301
[14] Generic strange duality for surfaces, Duke Math. J., Tome 162 (2013) no. 8, pp. 1463-1501 (With an appendix by Kota Yoshioka) | Article | MR 3079253 | Zbl 1275.14037
[15] A Torelli theorem for algebraic surfaces of type , Math. USSR Izvestia, Tome 5 (1971), pp. 547-588 | Article | Zbl 0253.14006
[16] Abelian fibred holomorphic symplectic manifolds, Turkish J. Math., Tome 27 (2003) no. 1, pp. 197-230 | MR 1975339 | Zbl 1065.53067
[17] Dualité étrange de Le Potier et cohomologie du schéma de Hilbert ponctuel d’une surface, Gaz. Math. (2007) no. 112, pp. 53-65 | MR 2319915 | Zbl 1120.14032
[18] Cohomology of the Hilbert scheme of points on a surface with values in representations of tautological bundles, Duke Math. J., Tome 150 (2009) no. 2, pp. 211-267 | Article | MR 2569613 | Zbl 1211.14012