Nous montrons qu’il existe un groupe de type fini de croissance pour n’importe quelle fonction satisfaisant lorsque est suffisamment grand, avec la racine positive de . Soit ; alors toutes les fonctions qui croissent uniformément plus vite que sont réalisables comme fonction de croissance d’un groupe.
Nous exhibons aussi une famille de groupes branchés contractants-pour-la-somme et de croissance , pour un sous-ensemble dense d’.
We show that there exists a finitely generated group of growth for all functions satisfying for all large enough and the positive root of . Set ; then all functions that grow uniformly faster than are realizable as the growth of a group.
We also give a family of sum-contracting branched groups of growth for a dense set of .
@article{AIF_2014__64_5_2003_0, author = {Bartholdi, Laurent and Erschler, Anna}, title = {Groups of given intermediate word growth}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {2003-2036}, doi = {10.5802/aif.2902}, zbl = {06387329}, mrnumber = {3330929}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_5_2003_0} }
Bartholdi, Laurent; Erschler, Anna. Groups of given intermediate word growth. Annales de l'Institut Fourier, Tome 64 (2014) pp. 2003-2036. doi : 10.5802/aif.2902. http://gdmltest.u-ga.fr/item/AIF_2014__64_5_2003_0/
[1] The growth of Grigorchuk’s torsion group, Internat. Math. Res. Notices (1998) no. 20, pp. 1049-1054 | Article | MR 1656258 | Zbl 0942.20027
[2] Lower bounds on the growth of a group acting on the binary rooted tree, Internat. J. Algebra Comput., Tome 11 (2001) no. 1, pp. 73-88 | Article | MR 1818662 | Zbl 1028.20025
[3] Endomorphic presentations of branch groups, J. Algebra, Tome 268 (2003) no. 2, pp. 419-443 | Article | MR 2009317 | Zbl 1044.20015
[4] Growth of permutational extensions, Invent. Math., Tome 189 (2012) no. 2, pp. 431-455 | Article | MR 2947548 | Zbl 1286.20025
[5] Poisson-Furstenberg boundary and growth of groups (arXiv:math/1107.5499)
[6] Branch groups, Handbook of algebra, Vol. 3, North-Holland, Amsterdam (2003), pp. 989-1112 | MR 2035113 | Zbl 1140.20306
[7] Images of Golod-Shafarevich algebras with small growth (to appear in Quartely J. Math, arXiv:math/1108.4267, DOI: 10.1093/qmath/hat005) | MR 3230369
[8] On the word and period growth of some groups of tree automorphisms, Comm. Algebra, Tome 29 (2001) no. 11, pp. 4923-4964 | Article | MR 1856923 | Zbl 1001.20027
[9] Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc., Tome 85 (1957), pp. 219-227 | MR 87058 | Zbl 0079.13502
[10] Growth behaviours in the range (arXiv:math/1107.1632)
[11] Growth of certain groups of automorphisms of rooted trees, Université de Paris 7 (2008) (Doctoral Dissertation)
[12] Problems and Solutions: Advanced Problems: 5600-5609, Amer. Math. Monthly, Tome 75 (1968) no. 6, pp. 685-687 | Article | MR 1534960
[13] Finitely presented wreath products and double coset decompositions, Geom. Dedicata, Tome 122 (2006), pp. 89-108 | Article | MR 2295543 | Zbl 1137.20019
[14] Boundary behavior for groups of subexponential growth, Ann. of Math. (2), Tome 160 (2004) no. 3, pp. 1183-1210 | Article | MR 2144977 | Zbl 1089.20025
[15] Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier (Grenoble), Tome 55 (2005) no. 2, pp. 493-509 | Article | Numdam | MR 2147898 | Zbl 1133.20031
[16] On the degrees of growth of finitely generated groups, Funktsional. Anal. i Prilozhen., Tome 39 (2005) no. 4, pp. 86-89 | MR 2197519 | Zbl 1122.20016
[17] On the Milnor problem of group growth, Dokl. Akad. Nauk SSSR, Tome 271 (1983) no. 1, pp. 30-33 | MR 712546 | Zbl 0547.20025
[18] Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., Tome 48 (1984) no. 5, pp. 939-985 | MR 764305 | Zbl 0583.20023
[19] Degrees of growth of -groups and torsion-free groups, Mat. Sb. (N.S.), Tome 126(168) (1985) no. 2, p. 194-214, 286 | MR 784354 | Zbl 0568.20033
[20] An example of an indexed language of intermediate growth, Theoret. Comput. Sci., Tome 215 (1999) no. 1-2, pp. 325-327 | Article | MR 1678812 | Zbl 0913.68121
[21] Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981) no. 53, pp. 53-73 | Article | Numdam | MR 623534 | Zbl 0474.20018
[22] Topics in geometric group theory, University of Chicago Press, Chicago, IL, Chicago Lectures in Mathematics (2000), pp. vi+310 | MR 1786869 | Zbl 0965.20025
[23] Groups of oscillating intermediate growth, Ann. of Math. (2), Tome 177 (2013) no. 3, pp. 1113-1145 | Article | MR 3034295 | Zbl 1283.20027
[24] Growth of algebras and Gelfand-Kirillov dimension, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 22 (2000), pp. x+212 | MR 1721834 | Zbl 0957.16001
[25] On a lower bound for the growth function of the Grigorchuk group, Mat. Zametki, Tome 67 (2000) no. 3, pp. 475-477 | MR 1779480 | Zbl 0984.20020
[26] How groups grow, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 395 (2012), pp. 1-200 | MR 2894945 | Zbl 1253.20032
[27] On growth of Grigorchuk groups, Internat. J. Algebra Comput. (2001) no. 1, pp. 1-17 | Article | MR 1818659 | Zbl 1024.20031
[28] On a -generated infinite -group: the presentation problem, J. Algebra, Tome 110 (1987) no. 1, pp. 13-23 | Article | MR 904179 | Zbl 0623.20024
[29] The growth functions of finitely generated semigroups, Semigroup Forum, Tome 21 (1980) no. 4, pp. 351-360 | Article | MR 597500 | Zbl 0453.20047
[30] The Gel’fand-Kirillov dimension of a tensor product, Math. Z., Tome 185 (1984) no. 4, pp. 441-447 | Article | MR 733766 | Zbl 0506.16017