Grosso modo, en utilisant le programme des modèles minimaux semi-stables, nous montrons que la partie modulaire d’une fibration lc-triviale coïncide avec celle d’une fibration klt-triviale induite par adjonction aprés changement de base par un morphisme génériquement fini. Comme application, eu utilisant le résultat de Ambro sur fibrations klt-triviales, on obtient que la partie modulaire d’une fibration lc-triviale est b-nef et abondante.
Roughly speaking, by using the semi-stable minimal model program, we prove that the moduli part of an lc-trivial fibration coincides with that of a klt-trivial fibration induced by adjunction after taking a suitable generically finite cover. As an application, we obtain that the moduli part of an lc-trivial fibration is b-nef and abundant by Ambro’s result on klt-trivial fibrations.
@article{AIF_2014__64_4_1721_0, author = {Fujino, Osamu and Gongyo, Yoshinori}, title = {On the moduli b-divisors of lc-trivial fibrations}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {1721-1735}, doi = {10.5802/aif.2894}, zbl = {06387321}, mrnumber = {3329677}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_4_1721_0} }
Fujino, Osamu; Gongyo, Yoshinori. On the moduli b-divisors of lc-trivial fibrations. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1721-1735. doi : 10.5802/aif.2894. http://gdmltest.u-ga.fr/item/AIF_2014__64_4_1721_0/
[1] Shokurov’s boundary property, J. Differential Geom., Tome 67 (2004) no. 2, pp. 229-255 | MR 2153078 | Zbl 1097.14029
[2] The moduli b-divisor of an lc-trivial fibration, Compos. Math., Tome 141 (2005) no. 2, pp. 385-403 | Article | MR 2134273 | Zbl 1094.14025
[3] Images of manifolds with semi-ample anti-canonical divisor (to appear in J. Algebraic Geom)
[4] -fold flips after Shokurov, Flips for -folds and -folds, Oxford Univ. Press, Oxford (Oxford Lecture Ser. Math. Appl.) Tome 35 (2007), pp. 18-48 | MR 2359340 | Zbl 1286.14022
[5] Théorie de Hodge. II, (French) Inst. Hautes Études Sci. Publ. Math., Tome 40 (1971), pp. 5-57 | Article | Numdam | MR 498551 | Zbl 0219.14007
[6] Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN, Tome 2014 (2014) no. 6, p. 1645-1492 | MR 3180598
[7] Higher direct images of log canonical divisors and positivity theorems (preprint (2003). arXiv:math/0302073v1)
[8] Abundance theorem for semi log canonical threefolds, Duke Math. J., Tome 102 (2000) no. 3, pp. 513-532 | Article | MR 1756108 | Zbl 0986.14007
[9] A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J., Tome 172 (2003), pp. 129-171 | MR 2019523 | Zbl 1072.14040
[10] Higher direct images of log canonical divisors, J. Differential Geom., Tome 66 (2004) no. 3, pp. 453-479 | MR 2106473 | Zbl 1072.14019
[11] What is log terminal?, Flips for -folds and -folds, Oxford Univ. Press, Oxford (Oxford Lecture Ser. Math. Appl.) Tome 35 (2007), pp. 49-62 | MR 2359341 | Zbl 1286.14024
[12] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Tome 47 (2011) no. 3, pp. 727-789 | Article | MR 2832805 | Zbl 1234.14013
[13] On Kawamata’s theorem, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2011), pp. 305-315 | MR 2779478 | Zbl 1213.14015
[14] Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Tome 87 (2011) no. 3, pp. 25-30 | Article | MR 2802603 | Zbl 1230.14016
[15] Basepoint-free theorems: saturation, b-divisors, and canonical bundle formula, Algebra Number Theory, Tome 6 (2012) no. 4, pp. 797-823 | Article | MR 2966720 | Zbl 1251.14005
[16] Some remarks on the minimal model program for log canonical pairs (to appear in Kodaira Centennial issue of Journal of Mathematical Sciences, the University of Tokyo)
[17] Variations of mixed Hodge structure and semi-positivity theorems (to appear in Publ. Res. Inst. Math. Sci.) | Zbl 1305.14004
[18] The regularity theorem in algebraic geometry, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris (1971), pp. 437-443 | MR 472822 | Zbl 0235.14006
[19] Subadjunction of log canonical divisors for a subvariety of codimension , Birational algebraic geometry (Baltimore, MD, 1996), Amer. Math. Soc., Providence, RI (Contemp. Math.) (1997), pp. 79-88 | MR 1462926 | Zbl 0901.14004
[20] Toroidal embeddings. I, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Tome 339 (1973) | MR 335518 | Zbl 0271.14017
[21] Kodaira’s canonical bundle formula and adjunction, Flips for -folds and -folds, Oxford Univ. Press, Oxford (Oxford Lecture Ser. Math. Appl.) Tome 35 (2007), pp. 134-162 | MR 2359346 | Zbl 1286.14027
[22] Towards the second main theorem on complements, J. Algebraic Geom., Tome 18 (2009) no. 1, pp. 151-199 | Article | MR 2448282 | Zbl 1159.14020
[23] Variation of mixed Hodge structure and the Torelli problem, Algebraic geometry, Sendai, 1985, North-Holland, Amsterdam (Adv. Stud. Pure Math.) (1987), pp. 649-693 | MR 946252 | Zbl 0643.14005