Soit une variété riemannienne et un opérateur elliptique, auto-adjoint, covariant conforme d’ordre agissant sur les sections lisses d’un fibré sur . Nous montrons que si n’admet pas d’espaces propres rigides (voir Définition 2.2), l’ensemble des fonctions pour lesquelles n’admet que des valeurs propres non nulles est un ensemble résiduel dans . Ce résultat a comme conséquence que si n’admet pas d’espaces propres rigides pour un ensemble dense de métriques, alors toutes les valeurs propres non nulles sont simples pour un ensemble résiduel de métriques dans la topologie . Nous montrons également que les valeurs propres de dependent continûment de dans la topologie si est fortement elliptique. Comme applications de nos résultats, nous montrons que si agit sur , comme dans le cas des opérateurs GJMS, alors les valeurs propres non-nulles de cet opérateur sont génériquement simples.
Let be a compact Riemannian manifold and an elliptic, formally self-adjoint, conformally covariant operator of order acting on smooth sections of a bundle over . We prove that if has no rigid eigenspaces (see Definition 2.2), the set of functions for which has only simple non-zero eigenvalues is a residual set in . As a consequence we prove that if has no rigid eigenspaces for a dense set of metrics, then all non-zero eigenvalues are simple for a residual set of metrics in the -topology. We also prove that the eigenvalues of depend continuously on in the -topology, provided is strongly elliptic. As an application of our work, we show that if acts on (e.g. GJMS operators), its non-zero eigenvalues are generically simple.
@article{AIF_2014__64_3_947_0, author = {Canzani, Yaiza}, title = {On the multiplicity of eigenvalues of~conformally covariant operators}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {947-970}, doi = {10.5802/aif.2870}, zbl = {06387297}, mrnumber = {3330160}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_947_0} }
Canzani, Yaiza. On the multiplicity of eigenvalues of conformally covariant operators. Annales de l'Institut Fourier, Tome 64 (2014) pp. 947-970. doi : 10.5802/aif.2870. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_947_0/
[1] The supremum of conformally covariant eigenvalues in a conformal class, Variational Problems in Differential Geometry, Cambridge (London Mathematical Society Lecture Note Series) Tome 394 (2011), pp. 1-23
[2] Generic properties of the eigenvalue of the laplacian for compact riemannian manifolds, Tohoku Mathematical Journal, Tome 35 (1983) no. 2, pp. 155-172 | MR 699924
[3] Verma modules and differential conformal invariants, Differential Geometry, Tome 32 (1990), pp. 851-898 | MR 1078164 | Zbl 0732.53011
[4] The transformation of the electrodynamical equations, Proceedings of the London Mathematical Society, Tome 2 (1910) no. 1, pp. 223-264 | MR 1577429
[5] Splitting the spectrum of a riemannian manifold, SIAM Journal on Mathematical Analysis, Tome 11 (1980), pp. 813 | MR 586909 | Zbl 0449.58021
[6] Conformally convariant equations on differential forms, Communications in Partial Differential Equations, Tome 7 (1982) no. 4, pp. 393-431 | MR 652815 | Zbl 0532.53021
[7] Differential operators canonically associated to a conformal structure, Mathematica scandinavica, Tome 57 (1985) no. 2, pp. 293-345 | MR 832360 | Zbl 0596.53009
[8] Sharp inequalities, the functional determinant, and the complementary series, Transactions of the American Mathematical Society, Tome 347 (1995), pp. 3671-3742 | MR 1316845 | Zbl 0848.58047
[9] Estimates and extremal problems for the log-determinant on 4-manifolds, Communications in Mathematical Physics, Tome 149 (1992), pp. 241-262 | MR 1186028 | Zbl 0761.58053
[10] Conformally invariant operators, differential forms, cohomology and a generalisation of q-curvature, Communications in Partial Differential Equations, Tome 30 (2005) no. 11, pp. 1611-1669 | MR 2182307 | Zbl 1226.58011
[11] Bochner-weitzenböck formulas associated with the rarita-schwinger operator, International Journal of Mathematics, Tome 13 (2002) no. 2, pp. 137-182 | MR 1891206 | Zbl 1109.53306
[12] Conformal indices of riemannian manifolds, Compositio mathematica, Tome 60 (1986) no. 3, pp. 261-293 | Numdam | MR 869104 | Zbl 0608.58039
[13] Generalized gradients and asymptotics of the functional trace, Odense Universitet, Institut for Mathematik og Datalogi (1988)
[14] Conformal geometry and global invariants, Differential Geometry and its Applications, Tome 1 (1991) no. 3, pp. 279-308 | MR 1244447 | Zbl 0785.53025
[15] Explicit functional determinants in four dimensions, Proceedings of the American Mathematical Society (1991), pp. 669-682 | MR 1050018 | Zbl 0762.47019
[16] Dirac eigenvalues for generic metrics on three-manifolds, Annals of Global Analysis and Geometry, Tome 24 (2003) no. 1, pp. 95-100 | MR 1990087 | Zbl 1035.53065
[17] Notes on conformal differential geometry, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Tome 43 (1996), pp. 57-76 | MR 1463509 | Zbl 0911.53020
[18] Nondegeneracy of the eigenvalues of the hodge laplacian for generic metrics on 3-manifolds, Transactions of the American Mathematical Society, Tome 364 (2012), pp. 4207-4224 | MR 2912451 | Zbl 1286.58021
[19] The dirac spectrum, Springer Verlag Tome 1976 (2009) | MR 2509837 | Zbl 1186.58020
[20] Conformally invariant operators of standard type, The Quarterly Journal of Mathematics, Tome 40 (1989) no. 2, pp. 197 | MR 997647 | Zbl 0683.53063
[21] Conformal de rham hodge theory and operators generalising the q-curvature, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, Tome 75 (2005), pp. 109-137 | MR 2152358 | Zbl 1104.53033
[22] Conformally invariant powers of the laplacian, i: Existence, Journal of the London Mathematical Society, Tome 2 (1992) no. 3, pp. 557 | MR 1190438 | Zbl 0726.53010
[23] Scattering matrix in conformal geometry, Inventiones Mathematicae, Tome 152 (2003) no. 1, pp. 89-118 | MR 1965361 | Zbl 1030.58022
[24] Harmonic spinors, Advances in Mathematics, Tome 14 (1974) no. 1, pp. 55 | MR 358873 | Zbl 0284.58016
[25] Generic properties of eigenfunctions, American Journal of Mathematics, Tome 98 (1976) no. 4, pp. 1059-1078 | MR 464332 | Zbl 0355.58017
[26] Complex Manifolds and Deformation of Complex Structures, Springer Tome 283 (1986) | MR 815922 | Zbl 0581.32012
[27] On deformations of complex analytic structures, iii. stability theorems for complex structures, The Annals of Mathematics, Tome 71 (1960) no. 1, pp. 43-76 | MR 115189 | Zbl 0128.16902
[28] Spin geometry, Princeton University Press Tome 38 (1989) | MR 1031992 | Zbl 0688.57001
[29] A quartic conformally covariant differential operator for arbitrary pseudo-riemannian manifolds (1983) (preprint)
[30] Perturbation theory of eigenvalue problems, Routledge (1969) | MR 240668 | Zbl 0181.42002
[31] How rare are multiple eigenvalues?, Communications on pure and applied mathematics, Tome 52 (1999) no. 8, pp. 917-934 | MR 1686977 | Zbl 0942.47012
[32] Analysis, geometry and topology of elliptic operators, World Scientific Pub Co Inc (2006) | MR 2254829
[33] On conformally invariant differential operators, Mathematische Nachrichten, Tome 129 (1986) no. 1, pp. 269-281 | MR 864639 | Zbl 0619.53008