Soit une variété compacte kählerienne et un -diviseur dont le support est à croisements normaux simples et à coefficients entre et . En supposant ample, on prouve l’existence et l’unicité d’une métrique de Kähler-Einstein à courbure négative sur ayant des singularités mixtes Poincaré et coniques suivant les coefficients de . Nous appliquons ensuite ce résultat pour prouver un théorème d’annulation concernant certains champs de tenseurs holomorphes naturellement attachés à la paire .
Let be a compact Kähler manifold and be a -divisor with simple normal crossing support and coefficients between and . Assuming that is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on having mixed Poincaré and cone singularities according to the coefficients of . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair .
@article{AIF_2014__64_3_1291_0, author = {Guenancia, Henri}, title = {K\"ahler-Einstein metrics with mixed Poincar\'e and cone singularities along a normal crossing divisor}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {1291-1330}, doi = {10.5802/aif.2881}, zbl = {06387308}, mrnumber = {3330171}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_1291_0} }
Guenancia, Henri. Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1291-1330. doi : 10.5802/aif.2881. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_1291_0/
[1] The space of Poincaré type Kähler metrics on the complement of a divisor (2011) (arXiv:1109.3159)
[2] A new capacity for plurisubharmonic functions, Acta Math., Tome 149 (1982) no. 1-2, pp. 1-40 | MR 674165 | Zbl 0547.32012
[3] A priori estimates for weak solutions of complex Monge-Ampère equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Tome 7 (2008) no. 1, pp. 81-96 | Numdam | MR 2413673 | Zbl 1150.32011
[4] Kähler-Einstein metrics and the Kähler-Ricci flow on log-Fano varieties (2011) (arXiv:1111.7158v2)
[5] A thermodynamical formalism for Monge-Ampèe equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math., Tome 248 (2013), pp. 1254-1297 | MR 3107540 | Zbl 1286.58010
[6] The Calabi-Yau theorem, Complex Monge-Ampère equations and geodesics in the space of Kähler metrics, Springer, Heidelberg (Lecture Notes in Math.) Tome 2038 (2012), pp. 201-227 | MR 2932444 | Zbl 1231.32017
[7] Monge-Ampère equations in big cohomology classes, Acta Math., Tome 205 (2010) no. 2, pp. 199-262 | MR 2746347 | Zbl 1213.32025
[8] Ricci flat Kähler metrics with edge singularities, Int. Math. Res. Not. IMRN (2013) no. 24, pp. 5727-5766 | MR 3144178 | Zbl 1293.32029
[9] Orbifoldes spéciales et classification biméromorphe des variétés kähleriennes compactes (2009) (arXiv:0705.0737)
[10] Special orbifolds and birational classification: a survey (2010) (arXiv:1001.3763) | MR 2779470 | Zbl 1229.14011
[11] Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér. (4), Tome 46 (2013) no. 6, pp. 879-916 | MR 3134683 | Zbl 1310.32029
[12] A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. Math., Tome 95 (1972), pp. 557-584 | MR 311935 | Zbl 0248.32018
[13] On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math., Tome 33 (1980), pp. 507-544 | MR 575736 | Zbl 0506.53031
[14] -reduction for smooth orbifolds, Manuscripta Math., Tome 127 (2008) no. 4, pp. 521-532 | MR 2457193 | Zbl 1163.14020
[15] Potential theory in several complex variables (Lecture given at the CIMPA in 1989, completed by a conference given in Trento, 1992; avalaible at the author’s webpage: http://www-fourier.ujf-grenoble.fr/~demailly/books.html)
[16] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 285-360 | MR 1492539 | Zbl 0919.32014
[17] Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York (1977), pp. x+401 (Grundlehren der Mathematischen Wissenschaften, Vol. 224) | MR 473443 | Zbl 0361.35003 | Zbl 0562.35001
[18] Entire holomorphic mappings in one and several complex variables, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo (1976), pp. x+99 (The fifth set of Hermann Weyl Lectures, given at the Institute for Advanced Study, Princeton, N. J., October and November 1974, Annals of Mathematics Studies, No. 85) | MR 447638 | Zbl 0317.32023
[19] The weighted Monge-Ampère energy of quasi plurisubharmonic functions, J. Funct. An., Tome 250 (2007), pp. 442-482 | MR 2352488 | Zbl 1143.32022
[20] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Tome 15 (2005) no. 4, pp. 607-639 | MR 2203165 | Zbl 1087.32020
[21] Uniqueness of Kähler-Einstein cone metrics, Publ. Mat. 44, Tome 44 (2000) no. 2, pp. 437-448 | MR 1800816 | Zbl 0981.32015
[22] Kähler-Einstein metrics with edge singularities (2011) (arXiv:1105.5216, with an appendix by C. Li and Y. Rubinstein)
[23] Kähler-Einstein metric on an open algebraic manifolds, Osaka 1. Math., Tome 21 (1984), pp. 399-418 | MR 752470 | Zbl 0582.32011
[24] The complex Monge-Ampère operator, Acta Math., Tome 180 (1998) no. 1, pp. 69-117 | MR 1618325 | Zbl 0913.35043
[25] Stability of solutions to the complex Monge-Ampère equations on compact Kähler manifolds (2001) (Preprint)
[26] Kähler-Einstein metrics singular along a smooth divisor, Journées "Équations aux dérivées partielles" (Saint Jean-de-Monts, 1999) (1999), pp. Exp. VI, 10 | MR 1718970 | Zbl 1009.32013
[27] Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, Birkhäuser Verlag, Basel, DMV Seminar, Tome 8 (1987), pp. 171 | MR 904673 | Zbl 0631.53004
[28] Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, Mathematical aspects of string theory (San Diego, Calif., 1986), World Sci. Publishing, Singapore (Adv. Ser. Math. Phys.) Tome 1 (1987), pp. 574-628 | MR 915840 | MR 915812 | Zbl 0682.53064
[29] A general Schwarz lemma for Kähler manifolds, Amer. J. Math., Tome 100 (1978), pp. 197-203 | MR 486659 | Zbl 0424.53040