Seshadri constants and interpolation on commutative algebraic groups
[Constantes de Seshadri et interpolation dans les groupes algébriques commutatifs]
Fischler, Stéphane ; Nakamaye, Michael
Annales de l'Institut Fourier, Tome 64 (2014), p. 1269-1289 / Harvested from Numdam

Dans cet article on étudie les lemmes d’interpolation dans les compactifications à la Serre de groupes algébriques commutatifs. On obtient un résultat aussi précis que les meilleurs lemmes de multiplicité connus, ce qui améliore notablement le lemme d’interpolation de Masser et celui du premier auteur. Ce raffinement provient d’une approche différente, fondée sur les constantes de Seshadri et les théorèmes d’annulation, et utilise les propriétés particulières des compactifications considérées.

In this article we study interpolation estimates on a special class of compactifications of commutative algebraic groups constructed by Serre. We obtain a large quantitative improvement over previous results due to Masser and the first author and our main result has the same level of accuracy as the best known multiplicity estimates. The improvements come both from using special properties of the compactifications which we consider and from a different approach based upon Seshadri constants and vanishing theorems.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2880
Classification:  14L10,  14C20,  11J95,  14L40
Mots clés: lemme d’interpolation, constante de Seshadri, fibré ample, groupe algébrique commutatif, sous-groupe obstructeur, sous-variété exceptionnelle de Seshadri
@article{AIF_2014__64_3_1269_0,
     author = {Fischler, St\'ephane and Nakamaye, Michael},
     title = {Seshadri constants and interpolation on commutative algebraic groups},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {1269-1289},
     doi = {10.5802/aif.2880},
     zbl = {06387307},
     mrnumber = {3330170},
     zbl = {1330.14076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_1269_0}
}
Fischler, Stéphane; Nakamaye, Michael. Seshadri constants and interpolation on commutative algebraic groups. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1269-1289. doi : 10.5802/aif.2880. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_1269_0/

[1] Birkenhake, Christina; Lange, Herbert Complex abelian varieties, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 302 (2004), pp. xii+635 | MR 2062673 | Zbl 1056.14063 | Zbl 0779.14012

[2] Campana, Frédéric; Peternell, Thomas Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math., Tome 407 (1990), pp. 160-166 | MR 1048532 | Zbl 0728.14004

[3] Ein, Lawrence; Küchle, Oliver; Lazarsfeld, Robert Local positivity of ample line bundles, J. Differential Geom., Tome 42 (1995) no. 2, pp. 193-219 | MR 1366545 | Zbl 0866.14004

[4] Fischler, S. Interpolation on algebraic groups, Compos. Math., Tome 141 (2005) no. 4, pp. 907-925 | MR 2148195 | Zbl 1080.14054

[5] Fischler, S.; Nakamaye, M. Connecting interpolation and multiplicity estimates in commutative algebraic groups (preprint arxiv 1209.2354 [math.NT], submitted) | Zbl 1347.11054

[6] Fulton, William Intersection theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 2 (1998), pp. xiv+470 | MR 1644323 | Zbl 0885.14002 | Zbl 0541.14005

[7] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York-Heidelberg (1977), pp. xvi+496 (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0367.14001 | Zbl 0531.14001

[8] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 10 (1987), pp. 283-360 | MR 946243 | Zbl 0672.14006

[9] Knop, F.; Lange, H. Some remarks on compactifications of commutative algebraic groups, Comment. Math. Helv., Tome 60 (1985) no. 4, pp. 497-507 | MR 826869 | Zbl 0587.14030

[10] Lazarsfeld, Robert Positivity in algebraic geometry. I and II, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete, Tome 48, 49 (2004), pp. xviii+387, xviii+385 | MR 2095471 | Zbl 1093.14500

[11] Masser, D. W. Interpolation on group varieties, Approximations diophantiennes et nombres transcendants (Luminy, 1982), Birkhäuser, Boston, Mass. (Progr. Math.) Tome 31 (1983), pp. 151-171 | MR 702196 | Zbl 0579.14038

[12] Masser, D. W.; Wüstholz, G. Zero estimates on group varieties. I, Invent. Math., Tome 64 (1981) no. 3, pp. 489-516 | MR 632987 | Zbl 0467.10025

[13] Mumford, David Abelian varieties, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, Tata Institute of Fundamental Research Studies in Mathematics, No. 5 (1970), pp. viii+242 | MR 282985 | Zbl 0223.14022

[14] Nakamaye, Michael Multiplicity estimates and the product theorem, Bull. Soc. Math. France, Tome 123 (1995) no. 2, pp. 155-188 | Numdam | MR 1340286 | Zbl 0841.11037

[15] Nakamaye, Michael Seshadri constants at very general points, Trans. Amer. Math. Soc., Tome 357 (2005) no. 8, pp. 3285-3297 | MR 2135747 | Zbl 1084.14008

[16] Nakamaye, Michael Multiplicity estimates on commutative algebraic groups, J. Reine Angew. Math., Tome 607 (2007), pp. 217-235 | MR 2338124 | Zbl 1162.11037

[17] Nakamaye, Michael Multiplicity estimates, interpolation, and transcendence theory, Number theory, analysis and geometry: In Memory of Serge Lang, D. Goldfeld et al. (ed), Springer, New York (2012), pp. 475-498 | MR 2867930 | Zbl 1268.11097

[18] Nakamaye, Michael; Ratazzi, Nicolas Lemmes de multiplicités et constante de Seshadri, Math. Z., Tome 259 (2008) no. 4, pp. 915-933 | MR 2403749 | Zbl 1156.11027

[19] Philippon, Patrice Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France, Tome 114 (1986) no. 3, pp. 355-383 | Numdam | MR 878242 | Zbl 0617.14001

[20] Serre, J.-P. Quelques propriétés des groupes algébriques commutatifs, Astérisque (1978) no. 69–70, pp. 191-202

[21] Waldschmidt, M. Dépendance de logarithmes dans les groupes algébriques, Approximations diophantiennes et nombres transcendants (Luminy, 1982), Birkhäuser, Boston, Mass. (Progr. Math.) Tome 31 (1983), pp. 289-328 | MR 702187 | Zbl 0513.14028

[22] Waldschmidt, Michel La transformation de Fourier-Borel : une dualité en transcendance (lecture given in Delphes, September 1989, available from http://www.math.jussieu.fr/~miw)

[23] Waldschmidt, Michel Fonctions auxiliaires et fonctionnelles analytiques. I, II, J. Analyse Math., Tome 56 (1991), p. 231-254, 255–279 | MR 1243105 | Zbl 0742.11036

[24] Waldschmidt, Michel Diophantine approximation on linear algebraic groups, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 326 (2000), pp. xxiv+633 (Transcendence properties of the exponential function in several variables) | MR 1756786 | Zbl 0944.11024