On montre que le modèle formel dû à Deligne du demi-plan -adique de Drinfeld relatif à un corps -adique représente un problème de modules de -modules munis d’une action de l’anneau des entiers dans une extension quadratique de . La démonstration repose sur une comparaison entre ce problème de modules et celui de Drinfeld des -modules formels spéciaux. Cet isomorphisme est une manifestation de l’isomorphisme exceptionel entre et , où est un espace hermitien déployé de dimension sur .
We show that the Deligne formal model of the Drinfeld -adic half-plane relative to a local field represents a moduli problem of polarized -modules with an action of the ring of integers in a quadratic extension of . The proof proceeds by establishing a comparison isomorphism with the Drinfeld moduli problem. This isomorphism reflects the accidental isomorphism of and for a two-dimensional split hermitian space for .
@article{AIF_2014__64_3_1203_0, author = {Kudla, Stephen and Rapoport, Michael}, title = {An alternative description of the Drinfeld $p$-adic half-plane}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {1203-1228}, doi = {10.5802/aif.2878}, zbl = {06387305}, mrnumber = {3330168}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_1203_0} }
Kudla, Stephen; Rapoport, Michael. An alternative description of the Drinfeld $p$-adic half-plane. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1203-1228. doi : 10.5802/aif.2878. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_1203_0/
[1] Uniformisation -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfelʼd, Astérisque, Tome 7 (1991) no. 196-197, p. 45-158 (1992) (Courbes modulaires et courbes de Shimura (Orsay, 1987/1988)) | MR 1141456 | Zbl 0781.14010
[2] Coverings of -adic symmetric domains, Funkcional. Anal. i Priložen., Tome 10 (1976) no. 2, pp. 29-40 | MR 422290 | Zbl 0346.14010
[3] New cases of -adic uniformization (In preparation)
[4] Special cycles on unitary Shimura varieties, III (In preparation)
[5] Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math., Tome 184 (2011) no. 3, pp. 629-682 | Article | MR 2800697 | Zbl 1229.14020
[6] On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebraic Geom., Tome 9 (2000) no. 3, pp. 577-605 | MR 1752014 | Zbl 0978.14023
[7] Local models of Shimura varieties, I. Geometry and combinatorics, Handbook of moduli, vol. III, International Press (Adv. Lect. in Math.) Tome 26 (2013), pp. 135-217 | MR 3135437
[8] Period spaces for -divisible groups, Princeton University Press, Princeton, NJ, Annals of Mathematics Studies, Tome 141 (1996), pp. xxii+324 | MR 1393439 | Zbl 0873.14039
[9] Schémas en groupes de type , Bull. Soc. Math. France, Tome 102 (1974), pp. 241-280 | Numdam | MR 419467 | Zbl 0325.14020
[10] Intersections of special cycles on the Shimura variety for GU (arXiv:1006.2106v1)
[11] The supersingular locus of the Shimura variety for , Canad. J. Math., Tome 62 (2010) no. 3, pp. 668-720 | Article | MR 2666394 | Zbl 1205.14028
[12] The supersingular locus of the Shimura variety of II, Invent. Math., Tome 184 (2011) no. 3, pp. 591-627 | Article | MR 2800696 | Zbl 1227.14027
[13] The supersingular locus of the Shimura variety for GU in the ramified case (2011) (Master thesis, Bonn)