Pour un diviseur pseudo-effectif nous construisons l’idéal diminué qui est une extension “continue” de l’idéal multiplicateur asymptotique pour les grands diviseurs au cône pseudo-effectif. L’idéal multiplicateur d’une métrique hermitiennes à singularités minimales sur est souvent contenu dans . Nous caractérisons les diviseurs abondants par l’idéal diminué, montrant que les informations de nature géométriques et analytique doivent coïncider.
Given a pseudo-effective divisor we construct the diminished ideal , a “continuous” extension of the asymptotic multiplier ideal for big divisors to the pseudo-effective boundary. Our main theorem shows that for most pseudo-effective divisors the multiplier ideal of the metric of minimal singularities on is contained in . We also characterize abundant divisors using the diminished ideal, indicating that the geometric and analytic information should coincide.
@article{AIF_2014__64_3_1077_0, author = {Lehmann, Brian}, title = {Algebraic bounds on analytic multiplier ideals}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {1077-1108}, doi = {10.5802/aif.2874}, zbl = {06387301}, mrnumber = {3330164}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_1077_0} }
Lehmann, Brian. Algebraic bounds on analytic multiplier ideals. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1077-1108. doi : 10.5802/aif.2874. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_1077_0/
[1] Divisorial Zariski Decompositions on Compact Complex Manifolds, Ann. Sci. École Norm. Sup., Tome 37 (2004) no. 4, pp. 45-76 | Numdam | MR 2050205 | Zbl 1054.32010
[2] The Pseudo-Effective Cone of a Compact Kähler Manifold and Varieties of Negative Kodaira Dimension, J. Alg. Geom., Tome 22 (2013), pp. 201-248 | MR 3019449 | Zbl 1267.32017
[3] Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Tome 44 (2008) no. 2, pp. 449-494 | MR 2426355 | Zbl 1146.32017
[4] Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth, 1990), Springer, Berlin (Lecture Notes in Math., 1507) (1992), pp. 87-104 | MR 1178721 | Zbl 0784.32024
[5] Monge-Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry, Plenum Press, New York (Univ. Ser. Math.) (1993), pp. 115-193 | MR 1211880 | Zbl 0792.32006
[6] Complex analytic and differential geometry (2012) (http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf)
[7] A Subadditivity Property of Multiplier Ideals, Michigan Math. J., Tome 48 (2000), pp. 137-156 | MR 1786484 | Zbl 1077.14516
[8] Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4), Tome 34 (2001) no. 4, pp. 525-556 | Numdam | MR 1852009 | Zbl 0994.32021
[9] Compact complex manifolds with numerically effective tangent bundles, Journal of Algebraic Geometry, Tome 3 (1994) no. 2, pp. 295-346 | MR 1257325 | Zbl 0827.14027
[10] Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Tome 12 (2001) no. 6, pp. 689-741 | MR 1875649 | Zbl 1111.32302
[11] Numerically trival foliations, Ann. Inst. Fourier (Grenoble), Tome 54 (2004) no. 4, pp. 887-938 | Numdam | MR 2111016 | Zbl 1071.32018
[12] Numerically trival foliations, Iitaka fibrations, and the numerical dimension (2005) (arXiv:math/0508340v1) | Numdam | MR 2111016
[13] Asymptotic invariants of base loci, Pure Appl. Math. Q., Tome 1 (2005) no. 2, pp. 379-403 | MR 2194730 | Zbl 1139.14008
[14] Restricted Volumes and Base Loci of Linear Series, Amer. J. Math., Tome 131 (2009) no. 3, pp. 607-651 | MR 2530849 | Zbl 1179.14006
[15] The valuative tree, Springer-Verlag, Berlin Heidelberg, Lecture notes in mathematics, Tome 1853 (2004) | MR 2097722 | Zbl 1064.14024
[16] Valuations and multiplier ideals, J. Amer. Math. Soc., Tome 18 (2005) no. 3, pp. 655-684 | MR 2138140 | Zbl 1075.14001
[17] A derived category approach to generic vanishing, J. Reine Angew. Math., Tome 575 (2004), pp. 173-187 | MR 2097552 | Zbl 1137.14012
[18] Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), Tome 62 (2012) no. 6, pp. 2145-2209 | Numdam | MR 3060755 | Zbl 1272.14016
[19] Positivity in Algebraic Geometry I-II, Springer-Verlag, Berlin Heidelberg, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Tome 48-49 (2004) | MR 2095471 | Zbl 0633.14016
[20] On Eckl’s pseudo-effective reduction map (2011) (arXiv:1103.1073, to appear in Trans. of the A.M.S.)
[21] Zariski-decomposition and abundance, Mathematical Society of Japan, Tokyo, MSJ Memoirs, Tome 14 (2004) | MR 2104208 | Zbl 1061.14018
[22] A characterization of nef and good divisors by asymptotic multiplier ideals, Bulletin of the Belgian Mathematical Society-Simon Stevin, Tome 16 (2009) no. 5, pp. 943-951 | MR 2574371 | Zbl 1183.14011
[23] Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Inventiones Mathematicae, Tome 27 (1974) no. 1, pp. 53-156 | MR 352516 | Zbl 0289.32003
[24] Iitaka’s fibration via multiplier ideals, Trans. Amer. Math. Soc., Tome 355 (2003) no. 1, pp. 37-47 | MR 1928076 | Zbl 1055.14011