A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach
[Une dérivation géométrique de l’équation de Boltzmann linéaire pour une particule en interaction avec un champ aléatoire gaussien, utilisant l’espace de Fock]
Breteaux, Sébastien
Annales de l'Institut Fourier, Tome 64 (2014), p. 1031-1076 / Harvested from Numdam

Dans cet article, l’équation de Boltzmann linéaire est dérivée pour une particule interagissant avec un champ aléatoire gaussien, dans la limite de faible couplage, avec un renouvellement temporel du champ aléatoire. L’état initial peut être choisi de façon arbitraire. La démonstration est géométrique et fait intervenir des états cohérents et du calcul semi-classique.

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2873
Classification:  82C10,  60K37,  81Exx,  81Sxx,  81D30,  82B44,  82C40
Mots clés: Équation de Boltzmann linéaire, processus dans des environnements aléatoires, théorie quantique des champs, états cohérents, théorie cinétique des gaz
@article{AIF_2014__64_3_1031_0,
     author = {Breteaux, S\'ebastien},
     title = {A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {1031-1076},
     doi = {10.5802/aif.2873},
     zbl = {06387300},
     mrnumber = {3330163},
     zbl = {1315.82015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_3_1031_0}
}
Breteaux, Sébastien. A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach. Annales de l'Institut Fourier, Tome 64 (2014) pp. 1031-1076. doi : 10.5802/aif.2873. http://gdmltest.u-ga.fr/item/AIF_2014__64_3_1031_0/

[1] Ammari, Zied; Nier, Francis Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Tome 9 (2008) no. 8, pp. 1503-1574 | Article | MR 2465733 | Zbl 1171.81014

[2] Ammari, Zied; Nier, Francis Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Tome 50 (2009) no. 4, pp. 042107, 16 | Article | MR 2513969 | Zbl 1214.81089

[3] Attal, Stéphane; Joye, Alain Weak coupling and continuous limits for repeated quantum interactions, J. Stat. Phys., Tome 126 (2007) no. 6, pp. 1241-1283 | Article | MR 2312948 | Zbl 1152.82013

[4] Attal, Stéphane; Pautrat, Yan From repeated to continuous quantum interactions, Ann. Henri Poincaré, Tome 7 (2006) no. 1, pp. 59-104 | Article | MR 2205464 | Zbl 1099.81040

[5] Bal, Guillaume; Papanicolaou, George; Ryzhik, Leonid Radiative transport limit for the random Schrödinger equation, Nonlinearity, Tome 15 (2002) no. 2, pp. 513-529 | Article | MR 1888863 | Zbl 0999.60061

[6] Bechouche, Philippe; Poupaud, Frédéric; Soler, Juan Quantum transport and Boltzmann operators, J. Stat. Phys., Tome 122 (2006) no. 3, pp. 417-436 | Article | MR 2205910 | Zbl 1149.82338

[7] Berezin, Feliks A. The method of second quantization, Academic Press, New York (1966), pp. xii+228 | MR 208930 | Zbl 0151.44001

[8] Boldrighini, Carlo; Bunimovich, Leonid A.; Sinaĭ, Yakov G. On the Boltzmann equation for the Lorentz gas, J. Statist. Phys., Tome 32 (1983) no. 3, pp. 477-501 | MR 725107 | Zbl 0583.76092

[9] Bratteli, Ola; Robinson, Derek W. Operator algebras and quantum statistical mechanics. 2, Springer-Verlag, Berlin, Texts and Monographs in Physics (1997), pp. xiv+519 (Equilibrium states. Models in quantum statistical mechanics) | MR 1441540 | Zbl 0421.46048

[10] Burq, Nicolas Mesures semi-classiques et mesures de défaut, Astérisque (1997) no. 245, pp. Exp. No. 826, 4, 167-195 (Séminaire Bourbaki, Vol. 1996/97) | Numdam | MR 1627111 | Zbl 0954.35102

[11] Chen, Thomas Localization lengths and Boltzmann limit for the Anderson model at small disorders in dimension 3, J. Stat. Phys., Tome 120 (2005) no. 1-2, pp. 279-337 | Article | MR 2165532 | Zbl 1142.82008

[12] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Masson, Paris, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series] (1984), pp. xxiii+1411 | MR 792484 | Zbl 0664.47003

[13] Dautray, Robert; Lions, Jacques-Louis Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3, Masson, Paris, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series] (1985), pp. xxxiv+1303 | Zbl 0642.35001

[14] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit. II. The recollision diagrams, Comm. Math. Phys., Tome 271 (2007) no. 1, pp. 1-53 | Article | MR 2283953 | Zbl 1205.82123

[15] Erdős, László; Salmhofer, Manfred; Yau, Horng-Tzer Quantum diffusion of the random Schrödinger evolution in the scaling limit, Acta Math., Tome 200 (2008) no. 2, pp. 211-277 | Article | MR 2413135 | Zbl 1155.82015

[16] Erdös, László; Yau, Horng-Tzer Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation, Comm. Pure Appl. Math., Tome 53 (2000) no. 6, pp. 667-735 | Article | Zbl 1028.82010

[17] Folland, Gerald B. Quantum field theory, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 149 (2008), pp. xii+325 (A tourist guide for mathematicians) | MR 2436991 | Zbl 1155.81003

[18] Gallavotti, Giovanni Divergences and the Approach to Equilibrium in the Lorentz and the Wind-Tree Models, Phys. Rev., Tome 185 (1969) no. 1, pp. 308-322 | Article

[19] Gérard, Patrick Mesures semi-classiques et ondes de Bloch, Séminaire sur les Équations aux Dérivées Partielles, 1990–1991, École Polytech., Palaiseau (1991), pp. Exp. No. XVI, 19 | Numdam | MR 1131589 | Zbl 0739.35096

[20] Gérard, Patrick Microlocal defect measures, Comm. Partial Differential Equations, Tome 16 (1991) no. 11, pp. 1761-1794 | Article | MR 1135919 | Zbl 0770.35001

[21] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., Tome 50 (1997) no. 4, pp. 323-379 | Article | MR 1438151 | Zbl 0881.35099

[22] Gérard, Patrick; Markowich, Peter A.; Mauser, Norbert J.; Poupaud, Frédéric Erratum: “Homogenization limits and Wigner transforms” [Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379; MR1438151 (98d:35020)], Comm. Pure Appl. Math., Tome 53 (2000) no. 2, p. 280-281 | Article | MR 1438151 | Zbl 0881.35099

[23] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys., Tome 66 (1979) no. 1, pp. 37-76 | MR 530915 | Zbl 0443.35067

[24] Ginibre, Jean; Velo, Giorgio The classical field limit of scattering theory for nonrelativistic many-boson systems. II, Comm. Math. Phys., Tome 68 (1979) no. 1, pp. 45-68 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905266 | MR 539736 | Zbl 0443.35068

[25] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. I. Borel summability for bounded potentials, Ann. Physics, Tome 128 (1980) no. 2, pp. 243-285 | MR 602197 | Zbl 0447.47026

[26] Ginibre, Jean; Velo, Giorgio The classical field limit of nonrelativistic bosons. II. Asymptotic expansions for general potentials, Ann. Inst. H. Poincaré Sect. A (N.S.), Tome 33 (1980) no. 4, pp. 363-394 | Numdam | MR 605198 | Zbl 0457.47039

[27] Glimm, James; Jaffe, Arthur Quantum physics, Springer-Verlag, New York (1987), pp. xxii+535 (A functional integral point of view) | MR 887102 | Zbl 0461.46051

[28] Hepp, Klaus The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., Tome 35 (1974), pp. 265-277 | MR 332046

[29] Ho, Ting-Guo; Landau, Lawrence J.; Wilkins, A. J. On the weak coupling limit for a Fermi gas in a random potential, Rev. Math. Phys., Tome 5 (1993) no. 2, pp. 209-298 | Article | Zbl 0816.46079

[30] Lions, Pierre-Louis; Paul, Thierry Sur les mesures de Wigner, Rev. Mat. Iberoamericana, Tome 9 (1993) no. 3, pp. 553-618 | MR 1251718 | Zbl 0801.35117

[31] Martinez, André An introduction to semiclassical and microlocal analysis, Springer-Verlag, New York, Universitext (2002), pp. viii+190 | MR 1872698 | Zbl 0994.35003

[32] Poupaud, Frédéric; Vasseur, Alexis Classical and quantum transport in random media, J. Math. Pures Appl. (9), Tome 82 (2003) no. 6, pp. 711-748 | Article | MR 1996779 | Zbl 1035.82037

[33] Reed, Michael; Simon, Barry Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975), pp. xv+361 | MR 493420 | Zbl 0242.46001

[34] Reed, Michael; Simon, Barry Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1979), pp. xv+463 (Scattering theory) | MR 529429 | Zbl 0405.47007

[35] Simon, Barry The P(φ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J. (1974), pp. xx+392 (Princeton Series in Physics) | MR 489552 | Zbl 1175.81146

[36] Spohn, Herbert Derivation of the transport equation for electrons moving through random impurities, J. Statist. Phys., Tome 17 (1977) no. 6, pp. 385-412 | MR 471824 | Zbl 0964.82508

[37] Spohn, Herbert Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., Tome 52 (1980) no. 3, pp. 569-615 | Article | MR 578142 | Zbl 0399.60082