On cusps and flat tops
[Singularités et points critiques plats]
Dobbs, Neil
Annales de l'Institut Fourier, Tome 64 (2014), p. 571-605 / Harvested from Numdam

La théorie de Pesin est développée pour une classe d’applications de l’intervalle, lisses par morceaux. On n’exclut ni des singularités de la dérivée, ni que les points critiques soit plats. On prend comme hypothèse que la dérivée satisfasse à une condition liée à celle de la régularité Hölder.

Nos résultats s’appliquent à des transformations de l’intervalle de classe C 1+ϵ . Comme conséquence, on démontre l’absence de mesure de probabilité invariante et absolument continue par rapport à la mesure de Lebesgue, lorsque les points critiques sont trop plats. Cela étend un résultat de Benedicks et Misiurewicz.

Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to C 1+ϵ . The critical points are not required to verify a non-flatness condition, so the results are applicable to C 1+ϵ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2858
Classification:  37E05,  37D25
Mots clés: exposant de Lyapunov, théorie de Pesin, mesures invariantes et absolument continues, dynamique sur l’intervalle, points critiques plats.
@article{AIF_2014__64_2_571_0,
     author = {Dobbs, Neil},
     title = {On cusps and flat tops},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {571-605},
     doi = {10.5802/aif.2858},
     zbl = {06387285},
     mrnumber = {3330915},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_2_571_0}
}
Dobbs, Neil. On cusps and flat tops. Annales de l'Institut Fourier, Tome 64 (2014) pp. 571-605. doi : 10.5802/aif.2858. http://gdmltest.u-ga.fr/item/AIF_2014__64_2_571_0/

[1] Araújo, Vítor; Luzzatto, Stefano; Viana, Marcelo Invariant measures for interval maps with critical points and singularities, Adv. Math., Tome 221 (2009) no. 5, pp. 1428-1444 | Article | MR 2522425 | Zbl 1184.37032

[2] Aspenberg, Magnus Rational Misiurewicz maps are rare, Comm. Math. Phys., Tome 291 (2009) no. 3, pp. 645-658 | Article | MR 2534788 | Zbl 1185.37103

[3] Benedicks, Michael; Misiurewicz, Michał Absolutely continuous invariant measures for maps with flat tops, Inst. Hautes Études Sci. Publ. Math. (1989) no. 69, pp. 203-213 | Article | Numdam | MR 1019965 | Zbl 0703.58030

[4] Blokh, A. M.; Lyubich, M. Yu. Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4), Tome 24 (1991) no. 5, pp. 545-573 | Numdam | MR 1132757 | Zbl 0790.58024

[5] Bruin, H. Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys., Tome 168 (1995) no. 3, pp. 571-580 | Article | MR 1328254 | Zbl 0827.58015

[6] Bruin, H.; Rivera-Letelier, J.; Shen, W.; Van Strien, S. Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math., Tome 172 (2008) no. 3, pp. 509-533 | Article | MR 2393079 | Zbl 1138.37019

[7] Bruin, Henk; Shen, Weixiao; Van Strien, Sebastian Invariant measures exist without a growth condition, Comm. Math. Phys., Tome 241 (2003) no. 2-3, pp. 287-306 | MR 2013801 | Zbl 1098.37034

[8] Bruin, Henk; Todd, Mike Equilibrium states for interval maps: the potential -tlog|Df|, Ann. Sci. Éc. Norm. Supér. (4), Tome 42 (2009) no. 4, pp. 559-600 | Numdam | MR 2568876 | Zbl 1192.37051

[9] Díaz-Ordaz, K.; Holland, M. P.; Luzzatto, S. Statistical properties of one-dimensional maps with critical points and singularities, Stoch. Dyn., Tome 6 (2006) no. 4, pp. 423-458 | Article | MR 2285510 | Zbl 1130.37362

[10] Dobbs, Neil Critical points, cusps and induced expansion in dimension one, Université Paris-Sud (2006) (Ph. D. Thesis)

[11] Dobbs, Neil Visible measures of maximal entropy in dimension one, Bull. Lond. Math. Soc., Tome 39 (2007) no. 3, pp. 366-376 | Article | MR 2331563 | Zbl 1132.37017

[12] Dobbs, Neil Measures with positive Lyapunov exponent and conformal measures in rational dynamics, Trans. Amer. Math. Soc., Tome 364 (2012) no. 6, pp. 2803-2824 | Article | MR 2888229 | Zbl 1267.37042

[13] Dobbs, Neil; Skorulski, Bartłomiej Non-existence of absolutely continuous invariant probabilities for exponential maps, Fund. Math., Tome 198 (2008) no. 3, pp. 283-287 | Article | MR 2391016 | Zbl 1167.37024

[14] Graczyk, Jacek; Sands, Duncan; Świątek, Grzegorz Metric attractors for smooth unimodal maps, Ann. of Math. (2), Tome 159 (2004) no. 2, pp. 725-740 | Article | MR 2081438 | Zbl 1055.37041

[15] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math., Tome 34 (1979) no. 3, p. 213-237 (1980) | Article | MR 570882 | Zbl 0422.28015

[16] Hofbauer, Franz On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math., Tome 38 (1981) no. 1-2, pp. 107-115 | Article | MR 599481 | Zbl 0456.28006

[17] Hofbauer, Franz; Raith, Peter The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull., Tome 35 (1992) no. 1, pp. 84-98 | Article | MR 1157469 | Zbl 0701.28005

[18] Hofbauer, Franz; Raith, Peter The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull., Tome 35 (1992) no. 1, pp. 84-98 | Article | MR 1157469 | Zbl 0701.28005

[19] Keller, Gerhard Lifting measures to Markov extensions, Monatsh. Math., Tome 108 (1989) no. 2-3, pp. 183-200 | Article | MR 1026617 | Zbl 0712.28008

[20] Keller, Gerhard Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems, Tome 10 (1990) no. 4, pp. 717-744 | Article | MR 1091423 | Zbl 0715.58020

[21] Ledrappier, François Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynamical Systems, Tome 1 (1981) no. 1, pp. 77-93 | Article | MR 627788 | Zbl 0487.28015

[22] Ledrappier, François Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., Tome 299 (1984) no. 1, pp. 37-40 | MR 756305 | Zbl 0567.58016

[23] Luzzatto, Stefano; Tucker, Warwick Non-uniformly expanding dynamics in maps with singularities and criticalities, Inst. Hautes Études Sci. Publ. Math. (1999) no. 89, p. 179-226 (2000) | Article | Numdam | MR 1793416 | Zbl 0978.37029

[24] Martens, Marco Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems, Tome 14 (1994) no. 2, pp. 331-349 | Article | MR 1279474 | Zbl 0809.58026

[25] De Melo, Welington; Van Strien, Sebastian One-dimensional dynamics, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 25 (1993), pp. xiv+605 | MR 1239171 | Zbl 0791.58003

[26] Newhouse, Sheldon E. Entropy and volume, Ergodic Theory Dynam. Systems, Tome 8 * (1988) no. Charles Conley Memorial Issue, pp. 283-299 | Article | MR 967642 | Zbl 0638.58016

[27] Parry, William Topics in ergodic theory, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 75 (1981), pp. x+110 | MR 614142 | Zbl 0449.28016

[28] Rohlin, V. A. Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2), Tome 39 (1964), pp. 1-36 | MR 228654 | Zbl 0154.15703

[29] Ruelle, David An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., Tome 9 (1978) no. 1, pp. 83-87 | Article | MR 516310 | Zbl 0432.58013

[30] Rychlik, Marek Bounded variation and invariant measures, Studia Math., Tome 76 (1983) no. 1, pp. 69-80 | MR 728198 | Zbl 0575.28011

[31] Sands, Duncan Misiurewicz maps are rare, Comm. Math. Phys., Tome 197 (1998) no. 1, pp. 109-129 | Article | MR 1646471 | Zbl 0921.58015

[32] Stefano, Luzzatto; Marcelo, Viana Positive Lyapunov exponents for Lorenz-like families with criticalities, Astérisque (2000) no. 261, pp. xiii, 201-237 | MR 1755442 | Zbl 0944.37025

[33] Thunberg, Hans Positive exponent in families with flat critical point, Ergodic Theory Dynam. Systems, Tome 19 (1999) no. 3, pp. 767-807 | Article | MR 1695920 | Zbl 0966.37011

[34] Zweimüller, Roland S-unimodal Misiurewicz maps with flat critical points, Fund. Math., Tome 181 (2004) no. 1, pp. 1-25 | Article | MR 2071693 | Zbl 1065.28009