On montre que l’algorithme de Braden-MacPherson calcule les fibres des faisceaux de parité. On en déduit que l’algorithme de Braden-MacPherson peut être utilisé pour calculer les caractères des modules basculants pour les groupes algébriques. Finalement, on montre que le lieu -lisse d’une variété de Schubert coïncide avec son lieu rationnellement lisse, si le graphe de Bruhat sous-jacent satisfait une condition dite GKM.
We show that the Braden-MacPherson algorithm computes the stalks of parity sheaves. As a consequence we deduce that the Braden-MacPherson algorithm may be used to calculate the characters of tilting modules for algebraic groups and show that the -smooth locus of a (Kac-Moody) Schubert variety coincides with the rationally smooth locus, if the underlying Bruhat graph satisfies a GKM-condition.
@article{AIF_2014__64_2_489_0, author = {Fiebig, Peter and Williamson, Geordie}, title = {Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {489-536}, doi = {10.5802/aif.2856}, zbl = {06387283}, mrnumber = {3330913}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_2_489_0} }
Fiebig, Peter; Williamson, Geordie. Parity sheaves, moment graphs and the $p$-smooth locus of Schubert varieties. Annales de l'Institut Fourier, Tome 64 (2014) pp. 489-536. doi : 10.5802/aif.2856. http://gdmltest.u-ga.fr/item/AIF_2014__64_2_489_0/
[1] Classes d’Euler équivariantes et points rationnellement lisses, Ann. Inst. Fourier (Grenoble), Tome 48 (1998) no. 3, pp. 861-912 | Article | Numdam | MR 1644106 | Zbl 0899.14023
[2] Séminaire Heidelberg-Strasbourg, 1966/1967 : Dualité de Poincaré, Institut de Recherche Mathématique Avancée, Laboratoire Associé au C.N.R.S., Université de Strasbourg, Strasbourg, Publication I.R.M.A. Strasbourg, No. 3 (1969), pp. ii+219 pp. (not consecutively paged)
[3] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Soc. Math. France, Paris (Astérisque) Tome 100 (1982), pp. 5-171 | MR 751966
[4] Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math., Tome 292 (1981) no. 1, pp. 15-18 | MR 610137 | Zbl 0476.14019
[5] Equivariant sheaves and functors, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1578 (1994), pp. iv+139 | MR 1299527 | Zbl 0808.14038
[6] Hyperbolic localization of intersection cohomology, Transform. Groups, Tome 8 (2003) no. 3, pp. 209-216 | Article | MR 1996415 | Zbl 1026.14005
[7] From moment graphs to intersection cohomology, Math. Ann., Tome 321 (2001) no. 3, pp. 533-551 | Article | MR 1871967 | Zbl 1077.14522
[8] Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) Tome 514 (1998), pp. 1-37 (Notes by Alvaro Rittatore) | MR 1649623 | Zbl 0946.14008
[9] A decomposition theorem for the integral homology of a variety, Invent. Math., Tome 73 (1983) no. 3, pp. 367-381 | Article | MR 718936 | Zbl 0533.14008
[10] The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 56 (1994), pp. 53-61 | MR 1278700 | Zbl 0818.14020
[11] The topological Schur lemma and related results, Ann. of Math. (2), Tome 100 (1974), pp. 307-321 | Article | MR 375357 | Zbl 0249.57023
[12] Topology, Allyn and Bacon Inc., Boston, Mass. (1966), pp. xvi+447 | MR 193606 | Zbl 0397.54003
[13] The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math., Tome 111 (1993) no. 3, pp. 571-574 | Article | MR 1202136 | Zbl 0813.20043
[14] Rank two detection of singularities of Schubert varieties (2005) (preprint http://www.nd.edu/~dyer/papers, arXiv:0906.2994)
[15] Lusztig’s conjecture as a moment graph problem, Bull. Lond. Math. Soc., Tome 42 (2010) no. 6, pp. 957-972 | Article | MR 2740015 | Zbl 1234.20054
[16] The multiplicity one case of Lusztig’s conjecture, Duke Math. J., Tome 153 (2010) no. 3, pp. 551-571 | Article | MR 2667425 | Zbl 1207.20040
[17] Sheaves on affine Schubert varieties, modular representations, and Lusztig’s conjecture, J. Amer. Math. Soc., Tome 24 (2011) no. 1, pp. 133-181 | Article | MR 2726602 | Zbl 1270.20053
[18] Young tableaux, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, Tome 35 (1997), pp. x+260 (With applications to representation theory and geometry) | MR 1464693 | Zbl 0878.14034
[19] Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math., Tome 131 (1998) no. 1, pp. 25-83 | Article | MR 1489894 | Zbl 0897.22009
[20] Representations of algebraic groups, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 107 (2003), pp. xiv+576 | MR 2015057 | Zbl 1034.20041
[21] Moment graphs and representations, Séminaires et Congrès, Tome 24 (2010), pp. 227-318
[22] Parity sheaves and tilting modules (In preparation, see http://arxiv.org/abs/0906.2994v1) | MR 3230821
[23] Parity sheaves (2009) (preprint http://arxiv.org/abs/0906.2994) | MR 3230821
[24] Perverse sheaves and modular representation theory, Séminaires et Congrès, Tome 24 (2012) no. II, pp. 313-350 | MR 3203032 | Zbl 1312.14053
[25] Kumar’s criterion modulo (2011) (preprint http://arxiv.org/abs/1201.5341) | MR 3273579
[26] Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 3, pp. 1177-1229 | Article | Numdam | MR 2543666 | Zbl 1187.14022
[27] Sheaves on manifolds, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 292 (1994), pp. x+512 (With a chapter in French by Christian Houzel, Corrected reprint of the 1990 original) | MR 1299726 | Zbl 0709.18001
[28] Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie, Birkhäuser, Basel (DMV Sem.) Tome 13 (1989), pp. 63-75 | MR 1044585 | Zbl 0722.14032
[29] The nil Hecke ring and singularity of Schubert varieties, Invent. Math., Tome 123 (1996) no. 3, pp. 471-506 | Article | MR 1383959 | Zbl 0863.14031
[30] Kac-Moody groups, their flag varieties and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 204 (2002), pp. xvi+606 | MR 1923198 | Zbl 1026.17030
[31] Singularities, character formulas, and a -analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981), Soc. Math. France, Paris (Astérisque) Tome 101 (1983), pp. 208-229 | MR 737932 | Zbl 0561.22013
[32] Characteristic classes, Princeton University Press, Princeton, N. J. (1974), pp. vii+331 (Annals of Mathematics Studies, No. 76) | MR 440554 | Zbl 0298.57008
[33] Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), Tome 166 (2007) no. 1, pp. 95-143 | Article | MR 2342692 | Zbl 1138.22013
[34] On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra, Tome 152 (2000) no. 1-3, pp. 311-335 (Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998)) | Article | MR 1784005 | Zbl 1101.14302
[35] Resolutions of unbounded complexes, Compositio Math., Tome 65 (1988) no. 2, pp. 121-154 | Numdam | MR 932640 | Zbl 0636.18006
[36] Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982, Soc. Math. France, Paris (Astérisque) Tome 92 (1982), pp. 249-273 | Numdam | MR 689533 | Zbl 0526.22014
[37] A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 31 (1984) no. 2, pp. 271-282 | MR 763421 | Zbl 0581.20048
[38] Equivariant completion, J. Math. Kyoto Univ., Tome 14 (1974), pp. 1-28 | MR 337963 | Zbl 0277.14008