Mass endomorphism, surgery and perturbations
[Endomorphisme de masse, chirurgie et perturbations]
Ammann, Bernd ; Dahl, Mattias ; Hermann, Andreas ; Humbert, Emmanuel
Annales de l'Institut Fourier, Tome 64 (2014), p. 467-487 / Harvested from Numdam

Nous montrons que l’endomorphisme de masse associé à l’opérateur de Dirac sur une variété riemannienne est non nul pour une métrique générique. La preuve s’appuie sur l’étude du comportement par chirurgie de l’endomorphisme de masse, de son comportement au voisinage d’une métrique possédant des spineurs harmoniques et par des arguments de perturbations analytiques.

We prove that the mass endomorphism associated to the Dirac operator on a Riemannian manifold is non-zero for generic Riemannian metrics. The proof involves a study of the mass endomorphism under surgery, its behavior near metrics with harmonic spinors, and analytic perturbation arguments.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2855
Classification:  53C27,  57R65,  58J05,  58J60
Mots clés: Opérateur de Dirac, endomorphisme de masse, chirurgie.
@article{AIF_2014__64_2_467_0,
     author = {Ammann, Bernd and Dahl, Mattias and Hermann, Andreas and Humbert, Emmanuel},
     title = {Mass endomorphism, surgery and~perturbations},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {467-487},
     doi = {10.5802/aif.2855},
     zbl = {06387282},
     mrnumber = {3330912},
     zbl = {1320.53053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_2_467_0}
}
Ammann, Bernd; Dahl, Mattias; Hermann, Andreas; Humbert, Emmanuel. Mass endomorphism, surgery and perturbations. Annales de l'Institut Fourier, Tome 64 (2014) pp. 467-487. doi : 10.5802/aif.2855. http://gdmltest.u-ga.fr/item/AIF_2014__64_2_467_0/

[1] Ammann, B. A spin-conformal lower bound of the first positive Dirac eigenvalue, Diff. Geom. Appl., Tome 18 (2003), pp. 21-32 | Article | MR 1951070 | Zbl 1030.58020

[2] Ammann, B. The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Comm. Anal. Geom., Tome 17 (2009), pp. 429-479 | Article | MR 2550205 | Zbl 1185.58013

[3] Ammann, B. A variational problem in conformal spin geometry (Habilitationsschrift, Universität Hamburg, 2003)

[4] Ammann, B.; Dahl, M.; Humbert, E. Surgery and harmonic spinors, Adv. Math., Tome 220 (2009), pp. 523-539 | Article | MR 2466425 | Zbl 1159.53021

[5] Ammann, B.; Dahl, M.; Humbert, E. Harmonic spinors and local deformations of the metric, Comm. Anal. Geom., Tome 18 (2011), pp. 927-936 | MR 2875865 | Zbl 1257.53077

[6] Ammann, B.; Grosjean, J.-F.; Humbert, E.; Morel, B. A spinorial analogue of Aubin’s inequality, Math. Z., Tome 260 (2008), pp. 127-151 | Article | MR 2413347 | Zbl 1145.53039

[7] Ammann, B.; Humbert, E.; Morel, B. Mass endomorphism and spinorial Yamabe type problems, Comm. Anal. Geom., Tome 14 (2006), pp. 163-182 | Article | MR 2230574 | Zbl 1126.53024

[8] Bär, C.; Dahl, M. Surgery and the Spectrum of the Dirac Operator, J. reine angew. Math., Tome 552 (2002), pp. 53-76 | MR 1940432 | Zbl 1017.58019

[9] Beig, R.; Murchadha, N. Ó Trapped surfaces due to concentration of gravitational radiation, Phys. Rev. Lett., Tome 66 (1991) no. 19, pp. 2421-2424 | Article | MR 1104859 | Zbl 0968.83504

[10] Bourguignon, J.-P.; Gauduchon, P. Spineurs, opérateurs de Dirac et variations de métriques, Comm. Math. Phys., Tome 144 (1992), pp. 581-599 | Article | MR 1158762 | Zbl 0755.53009

[11] Friedrich, T. Dirac Operators in Riemannian Geometry, AMS, Providence, Rhode Island, Graduate Studies in Mathematics, Tome 25 (2000) | MR 1777332 | Zbl 0949.58032

[12] Hermann, A. Generic metrics and the mass endomorphism on spin 3-manifolds, Ann. Glob. Anal. Geom., Tome 37 (2010), pp. 163-171 | Article | MR 2578263 | Zbl 1185.53014

[13] Hermann, A. Dirac eigenspinors for generic metrics, Universität Regensburg (2012) (Ph. D. Thesis)

[14] Hijazi, O Première valeur propre de l’opérateur de Dirac et nombre de Yamabe, C. R. Acad. Sci. Paris, Série I, Tome 313 (1991), pp. 865-868 | MR 1138566 | Zbl 0738.53030

[15] Kato, T. Perturbation theory for linear operators, Springer-Verlag, Grundlehren der mathematischen Wissenschaften, Tome 132 (1966) | MR 203473 | Zbl 0531.47014

[16] Lawson, H. B.; Michelsohn, M.-L. Spin geometry, Princeton University Press, Princeton (1989) | MR 1031992 | Zbl 0688.57001

[17] Lee, J. M.; Parker, T. H. The Yamabe problem, Bull. Am. Math. Soc., New Ser., Tome 17 (1987), pp. 37-91 | Article | MR 888880 | Zbl 0633.53062

[18] Maier, S. Generic metrics and connections on spin- and spin c -manifolds, Comm. Math. Phys., Tome 188 (1997), pp. 407-437 | Article | MR 1471821 | Zbl 0899.53036

[19] Schoen, R. Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom., Tome 20 (1984), pp. 479-495 | MR 788292 | Zbl 0576.53028

[20] Stolz, S. Simply connected manifolds of positive scalar curvature, Ann. of Math. (2), Tome 136 (1992) no. 3, pp. 511-540 | Article | MR 1189863 | Zbl 0784.53029