On étudie le comportement asymptotique des niveaux d’une fonction temps quasi-concave, définie sur un espace-temps globalement hyperbolique maximal plat de dimension trois, admettant une hypersurface de Cauchy de genre . On donne une réponse positive à une conjecture posée par Benedetti et Guadagnini dans [7]. Plus précisément, on montre que les niveaux d’une telle fonction temps convergent au sens de la topologie de Hausdorff-Gromov équivariante vers un arbre réel. On montre de plus que la limite est indépendante de la fonction temps choisie.
Let be a maximal globally hyperbolic Cauchy compact flat spacetime of dimension , admitting a Cauchy hypersurface diffeomorphic to a compact hyperbolic manifold. We study the asymptotic behaviour of level sets of quasi-concave time functions on . We give a positive answer to a conjecture of Benedetti and Guadagnini in [7]. More precisely, we prove that the level sets of such a time function converge in the Hausdorff-Gromov equivariant topology to a real tree. Moreover, this limit does not depend on the choice of the time function.
@article{AIF_2014__64_2_457_0, author = {Belraouti, Mehdi}, title = {Sur la g\'eom\'etrie de la singularit\'e initiale des espaces-temps plats globalement hyperboliques}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {457-466}, doi = {10.5802/aif.2854}, zbl = {06387281}, mrnumber = {3330911}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_2_457_0} }
Belraouti, Mehdi. Sur la géométrie de la singularité initiale des espaces-temps plats globalement hyperboliques. Annales de l'Institut Fourier, Tome 64 (2014) pp. 457-466. doi : 10.5802/aif.2854. http://gdmltest.u-ga.fr/item/AIF_2014__64_2_457_0/
[1] Constant mean curvature foliations of simplicial flat spacetimes, Comm. Anal. Geom., Tome 13 (2005) no. 5, pp. 963-979 http://projecteuclid.org/getRecord?id=euclid.cag/1144438303 | Article | MR 2216148 | Zbl 1123.53034
[2] Cosmological time versus CMC time in spacetimes of constant curvature (à paraître à Asian Journal of Mathematics)
[3] The cosmological time function, Classical Quantum Gravity, Tome 15 (1998) no. 2, pp. 309-322 | Article | MR 1606594 | Zbl 0911.53039
[4] Globally hyperbolic flat space-times, J. Geom. Phys., Tome 53 (2005) no. 2, pp. 123-165 | Article | MR 2110829 | Zbl 1087.53065
[5] Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes, Application to the Minkowski problem in the Minkowski space, Ann. Inst. Fourier, Tome 61 (2011) no. 2, pp. 511-591 | Article | Numdam | MR 2895066 | Zbl 1234.53019
[6] Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc., Tome 198 (2009) no. 926, pp. viii+164 | MR 2499272 | Zbl 1165.53047
[7] Cosmological time in -gravity, Nuclear Phys. B, Tome 613 (2001) no. 1-2, pp. 330-352 | Article | MR 1857817 | Zbl 0970.83039
[8] Deforming the Minkowskian cone of a closed hyperbolic manifold, Pisa (2005) (Ph. D. Thesis)
[9] Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom., Tome 69 (2005) no. 3, pp. 441-521 http://projecteuclid.org/getRecord?id=euclid.jdg/1122493997 | MR 2170277 | Zbl 1094.53063
[10] Geometric group actions on trees, Amer. J. Math., Tome 119 (1997) no. 1, pp. 83-102 http://muse.jhu.edu/journals/american_journal_of_mathematics/v119/119.1levitt.pdf | Article | MR 1428059 | Zbl 0878.20019
[11] Lorentz spacetimes of constant curvature, Geom. Dedicata, Tome 126 (2007), pp. 3-45 | Article | MR 2328921 | Zbl 1206.83117
[12] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2), Tome 120 (1984) no. 3, pp. 401-476 | Article | MR 769158 | Zbl 0583.57005
[13] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Tome 94 (1988) no. 1, pp. 53-80 | Article | MR 958589 | Zbl 0673.57034
[14] The Gromov topology on -trees, Topology Appl., Tome 32 (1989) no. 3, pp. 197-221 | Article | MR 1007101 | Zbl 0675.20033