Higher order duality and toric embeddings
[Dualité d’ordre supérieur et immersions toriques]
Dickenstein, Alicia ; Di Rocco, Sandra ; Piene, Ragni
Annales de l'Institut Fourier, Tome 64 (2014), p. 375-400 / Harvested from Numdam

La notion de variété duale d’ordre supérieur d’une variété projective, introduite par Piene en 1983, est une généralisation naturelle de la notion classique de dualité projective. Dans cet article, nous étudions les variétés duales d’ordre supérieur d’une immersion torique projective. Nous exprimons le degré de la variété duale d’ordre 2 d’une immersion 2-jet régulière, lisse et de dimension 3 en termes géometriques et combinatoires, et nous donnons une classification des variétés ayant une variété duale d’ordre 2 de dimension plus petite que celle attendue. Nous décrivons aussi la tropicalisation des variétés duales de tout ordre d’une variété torique immergée de façon équivariante (pas nécessairement normale).

Dedicated to the memory of our friend Mikael Passare (1959–2011)

The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the tropicalization of all higher order dual varieties of an equivariantly embedded (not necessarily normal) toric variety.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2851
Classification:  14M25,  14T05
Mots clés: variété torique, dualité projective d’ordre supérieur, tropicalisation
@article{AIF_2014__64_1_375_0,
     author = {Dickenstein, Alicia and Di Rocco, Sandra and Piene, Ragni},
     title = {Higher order duality and toric embeddings},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {375-400},
     doi = {10.5802/aif.2851},
     zbl = {06387278},
     mrnumber = {3330552},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_1_375_0}
}
Dickenstein, Alicia; Di Rocco, Sandra; Piene, Ragni. Higher order duality and toric embeddings. Annales de l'Institut Fourier, Tome 64 (2014) pp. 375-400. doi : 10.5802/aif.2851. http://gdmltest.u-ga.fr/item/AIF_2014__64_1_375_0/

[1] Bauer, Th.; Di Rocco, S.; Szemberg, T. Generation of jets on K3 surfaces, J. Pure Appl. Algebra, Tome 146 (2000) no. 1, pp. 17-27 | Article | MR 1733685 | Zbl 0956.14002

[2] Beltrametti, M.; Sommese, A. The adjunction theory of complex projective varieties, Walter de Gruyter & Co., de Gruyter Expositions in Mathematics, Tome 16 (1995), pp. xxii+398 | MR 1318687 | Zbl 0845.14003

[3] Bieri, R.; Groves, J. The geometry of the set of characters induced by valuations, J. reine angew. Math., Tome 347 (1984), pp. 168-195 | MR 733052 | Zbl 0526.13003

[4] Casagrande, C.; Di Rocco, S. Projective Q-factorial toric varieties covered by lines, Commun. Contemp. Math., Tome 10 (2008) no. 3, pp. 363-389 | Article | MR 2417921 | Zbl 1165.14036

[5] Danilov, V. I. The geometry of toric varieties, Uspekhi Mat. Nauk, Tome 33 (1978) no. 2(200), p. 85-134, 247 | MR 495499 | Zbl 0425.14013

[6] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H. Singular 3-1-3 — A computer algebra system for polynomial computations (2011) http://www.singular.uni-kl.de | Zbl 0902.14040

[7] Demazure, M. Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup., Tome 3 (1970) no. 4, pp. 507-588 | Numdam | MR 284446 | Zbl 0223.14009

[8] Di Rocco, S. Generation of k-jets on toric varieties, Math. Z., Tome 231 (1999) no. 1, pp. 169-188 | Article | MR 1696762 | Zbl 0941.14020

[9] Di Rocco, S. Projective duality of toric manifolds and defect polytopes, Proc. London Math. Soc., Tome 93 (2006) no. 1, pp. 85-104 | Article | MR 2235483 | Zbl 1098.14039

[10] Di Rocco, Sandra; Haase, Christian; Nill, Benjamin; Paffenholz, Andreas Polyhedral adjunction theory, Algebra Number Theory, Tome 7 (2013) no. 10, pp. 2417-2446 | Article | MR 3194647 | Zbl pre06322097

[11] Dickenstein, A.; Feichtner, E. M.; Sturmfels, B. Tropical discriminants, J. Amer. Math. Soc., Tome 20 (2007) no. 4, pp. 1111-1133 | Article | MR 2328718 | Zbl 1166.14033

[12] Dickenstein, A.; Tabera, L. F. Singular tropical hypersurfaces, Discrete Comput. Geom, Tome 47 (2012) no. 2, pp. 430-453 | Article | MR 2872547 | Zbl 1239.14055

[13] Ein, L. Varieties with small dual varieties. II, Duke Math. J., Tome 52 (1985) no. 4, pp. 895-907 | Article | MR 816391 | Zbl 0603.14026

[14] Ein, L. Varieties with small dual varieties. I, Invent. Math., Tome 86 (1986) no. 1, pp. 63-74 | Article | MR 853445 | Zbl 0603.14025

[15] Einsiedler, M.; Kapranov, M.; Lind, D. Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., Tome 601 (2006), pp. 139-157 | MR 2289207 | Zbl 1115.14051

[16] Fujita, T. On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry, Sendai, 1985, North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 10 (1987), pp. 167-178 | MR 946238 | Zbl 0659.14002

[17] Gel’Fand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston Inc., Mathematics: Theory & Applications (1994), pp. x+523 | MR 1264417 | Zbl 1138.14001

[18] Grigg, N. Factorization of tropical polynomials in one and several variables, Honor’s Thesis, Brigham Young University (June 2007)

[19] Lanteri, A.; Mallavibarrena, R. Higher order dual varieties of projective surfaces, Comm. Algebra, Tome 27 (1999) no. 10, pp. 4827-4851 | Article | MR 1709226 | Zbl 0997.14010

[20] Lanteri, A.; Mallavibarrena, R. Osculatory behavior and second dual varieties of del Pezzo surfaces, Adv. Geom., Tome 1 (2001) no. 4, pp. 345-363 | Article | MR 1881745 | Zbl 0982.14030

[21] Lanteri, A.; Mallavibarrena, R.; Piene, R. Inflectional loci of scrolls, Math. Z., Tome 258 (2008), pp. 557-564 | Article | MR 2369044 | Zbl 1143.14031

[22] Lanteri, Antonio; Mallavibarrena, Raquel; Piene, Ragni Inflectional loci of scrolls over smooth, projective varieties, Indiana Univ. Math. J., Tome 61 (2012) no. 2, pp. 717-750 | Article | MR 3043593 | Zbl 1273.14015

[23] Mallavibarrena, Raquel; Piene, Ragni Duality for elliptic normal surface scrolls, Enumerative algebraic geometry (Copenhagen, 1989), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 123 (1991), pp. 149-160 | MR 1143552 | Zbl 0758.14037

[24] Matsui, Y.; Takeuchi, K. A geometric degree formula for A-discriminants and Euler obstructions of toric varieties, Adv. Math., Tome 226 (2011) no. 2, pp. 2040-2064 | Article | MR 2737807 | Zbl 1205.14062

[25] Mustaţă, M. Vanishing theorems on toric varieties, Tohoku Math. J., Tome 54 (2002), pp. 451-470 | Article | MR 1916637 | Zbl 1092.14064

[26] Piene, R. A note on higher order dual varieties, with an application to scrolls, Singularities, Part 2 (Arcata, Calif., 1981), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 40 (1983), pp. 335-342 | MR 713259 | Zbl 0515.14031

[27] Piene, R.; Sacchiero, G. Duality for rational normal scrolls, Comm. Algebra, Tome 12 (1984) no. 9–10, pp. 1041-1066 | Article | MR 738534 | Zbl 0539.14027

[28] Rincón, Felipe Computing tropical linear spaces, J. Symbolic Comput., Tome 51 (2013), pp. 86-98 (Software TropLi available at: http://math.berkeley.edu/~felipe/tropli/) | Article | MR 3005783 | Zbl pre06143064

[29] Sturmfels, B. Solving systems of polynomial equations, Amer. Math. Soc., CBMS, Tome 97 (2002) | MR 1925796 | Zbl 1101.13040

[30] Tevelev, J. Compactifications of subvarieties of tori, Amer. J. Math., Tome 129 (2007) no. 4, pp. 1087-1104 | Article | MR 2343384 | Zbl 1154.14039