Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation
[Stabilité dans l’espace d’énergie pour les chaînes de solitons de l’équation de Gross-Pitaevskii en dimension un]
Béthuel, Fabrice ; Gravejat, Philippe ; Smets, Didier
Annales de l'Institut Fourier, Tome 64 (2014), p. 19-70 / Harvested from Numdam

Nous démontrons en dimension un la stabilité dans l’espace d’énergie des sommes de solitons de l’équation de Gross-Pitaevskii, dont les vitesses sont non nulles et deux-à-deux distinctes, et dont les positions initiales sont suffisamment espacées et ordonnées selon les vitesses des solitons.

We establish the stability in the energy space for sums of solitons of the one-dimensional Gross-Pitaevskii equation when their speeds are mutually distinct and distinct from zero, and when the solitons are initially well-separated and spatially ordered according to their speeds.

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/aif.2838
Classification:  35B35,  35Q51,  35Q55
Mots clés: Équation de Gross-Pitaevskii, sommes de solitons, stabilité
@article{AIF_2014__64_1_19_0,
     author = {B\'ethuel, Fabrice and Gravejat, Philippe and Smets, Didier},
     title = {Stability in the energy space for chains of~solitons of the one-dimensional Gross-Pitaevskii equation},
     journal = {Annales de l'Institut Fourier},
     volume = {64},
     year = {2014},
     pages = {19-70},
     doi = {10.5802/aif.2838},
     zbl = {06387265},
     mrnumber = {3330540},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2014__64_1_19_0}
}
Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier. Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation. Annales de l'Institut Fourier, Tome 64 (2014) pp. 19-70. doi : 10.5802/aif.2838. http://gdmltest.u-ga.fr/item/AIF_2014__64_1_19_0/

[1] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Farina, A.; Saut, J.-C. Existence and properties of travelling waves for the Gross-Pitaevskii equation, Stationary and time dependent Gross-Pitaevskii equations, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 473 (2008), pp. 55-104 | MR 2522014 | Zbl 1216.35132

[2] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, Tome 57 (2008) no. 6, pp. 2611-2642 | Article | MR 2482993 | Zbl 1171.35012

[3] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., Tome 2009 (2009) no. 14, pp. 2700-2748 | MR 2520771 | Zbl 1183.35240

[4] Béthuel, F.; Gravejat, P.; Saut, J.-C.; Smets, D. On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II, Comm. Partial Differential Equations, Tome 35 (2010) no. 1, pp. 113-164 | Article | MR 2748620 | Zbl 1213.35367

[5] Chiron, D. Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Tome 25 (2012) no. 3, pp. 813-850 | Article | MR 2887994 | Zbl 1278.35226

[6] Chiron, D.; Rousset, F. The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal., Tome 42 (2010) no. 1, pp. 64-96 | Article | MR 2596546 | Zbl 1210.35229

[7] Dunford, N.; Schwartz, J.T. Linear operators. Part II. Spectral theory. Self-adjoint operators in Hilbert space, Interscience Publishers, John Wiley and Sons, New York-London-Sydney, Pure and Applied Mathematics, Tome 7 (1963) (With the assistance of W.G. Bade and R.G. Bartle) | MR 188745 | Zbl 0635.47002

[8] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian methods in the theory of solitons, Springer-Verlag, Berlin-Heidelberg-New York, Classics in Mathematics (2007) (Translated by A.G. Reyman) | MR 2348643 | Zbl 1111.37001

[9] Gallo, C. Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Tome 9 (2004) no. 5-6, pp. 509-538 | MR 2099970 | Zbl 1103.35093

[10] Gérard, P. The Cauchy problem for the Gross-Pitaevskii equation, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, Tome 23 (2006) no. 5, pp. 765-779 | Article | Zbl 1122.35133

[11] Gérard, P.; Zhang, Z. Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., Tome 91 (2009) no. 2, pp. 178-210 | Article | MR 2498754 | Zbl 1232.35152

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., Tome 74 (1987) no. 1, pp. 160-197 | Article | MR 901236 | Zbl 0656.35122

[13] Lin, Z. Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, Tome 7 (2002) no. 8, pp. 897-918 | MR 1895111 | Zbl 1033.35117

[14] Martel, Y.; Merle, F. Stability of two soliton collision for nonintegrable gKdV equations, Commun. Math. Phys., Tome 286 (2009) no. 1, pp. 39-79 | Article | MR 2470923 | Zbl 1179.35291

[15] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Tome 183 (2011) no. 3, pp. 563-648 | Article | MR 2772088 | Zbl 1230.35121

[16] Martel, Y.; Merle, F.; Tsai, T.-P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Tome 231 (2002) no. 2, pp. 347-373 | Article | MR 1946336 | Zbl 1017.35098

[17] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Tome 133 (2006) no. 3, pp. 405-466 | Article | MR 2228459 | Zbl 1099.35134

[18] Miura, R.M. The Korteweg- de Vries equation: a survey of results, SIAM Rev., Tome 18 (1976) no. 3, pp. 412-459 | Article | MR 404890 | Zbl 0333.35021

[19] Tartousi, H.M. (PhD thesis In preparation)

[20] Vartanian, A.H. Long-time asymptotics of solutions to the Cauchy problem for the defocusing nonlinear Schrödinger equation with finite-density initial data. II. Dark solitons on continua, Math. Phys. Anal. Geom., Tome 5 (2002) no. 4, pp. 319-413 | Article | MR 1942685 | Zbl 1080.35060

[21] Zakharov, V.E.; Shabat, A.B. Interaction between solitons in a stable medium, Sov. Phys. JETP, Tome 37 (1973), pp. 823-828

[22] Zhidkov, P.E. Korteweg-De Vries and nonlinear Schrödinger equations : qualitative theory, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1756 (2001) | MR 1831831 | Zbl 0987.35001