Nous donnons des conditions nécessaires et suffisantes pour qu’un groupe orthogonal défini sur un corps global de caractéristique contienne un tore maximal d’un type donné.
We give necessary and sufficient conditions for an orthogonal group defined over a global field of characteristic to contain a maximal torus of a given type.
@article{AIF_2014__64_1_113_0, author = {Bayer-Fluckiger, Eva}, title = {Embeddings of maximal tori in orthogonal groups}, journal = {Annales de l'Institut Fourier}, volume = {64}, year = {2014}, pages = {113-125}, doi = {10.5802/aif.2840}, zbl = {06387267}, mrnumber = {3330542}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2014__64_1_113_0} }
Bayer-Fluckiger, Eva. Embeddings of maximal tori in orthogonal groups. Annales de l'Institut Fourier, Tome 64 (2014) pp. 113-125. doi : 10.5802/aif.2840. http://gdmltest.u-ga.fr/item/AIF_2014__64_1_113_0/
[1] Orthogonal groups containing a given maximal torus, J. Algebra, Tome 266 (2003) no. 1, pp. 87-101 | Article | MR 1994530 | Zbl 1079.11023
[2] Characterization of special points of orthogonal symmetric spaces, J. Algebra, Tome 372 (2012), pp. 397-419 | Article | MR 2990017 | Zbl pre06180116
[3] Weakly commensurable S-arithmetic subgroups in almost simple algebraic groups of types B and C (Algebra and Number Theory, to appear) | Zbl 1285.20045
[4] Type des tores maximaux des groupes semi-simples, J. Ramanujan Math. Soc., Tome 19 (2004) no. 3, pp. 213-230 | MR 2139505 | Zbl 1193.20057
[5] Embedding functors and their arithmetic properties (Comment. Math. Helv, to appear)
[6] Complex Multiplication (http://www.jmilne.org/math/CourseNotes/cm)
[7] On isometries of inner product spaces, Invent. Math., Tome 8 (1969), pp. 83-97 | Article | MR 249519 | Zbl 0177.05204
[8] Introduction to quadratic forms, Springer-Verlag, Berlin, Classics in Mathematics (2000), pp. xiv+342 (Reprint of the 1973 edition) | MR 1754311 | Zbl 1034.11003
[9] Local-global principles for embedding of fields with involution into simple algebras with involution, Comment. Math. Helv., Tome 85 (2010) no. 3, pp. 583-645 | Article | MR 2653693 | Zbl 1223.11047
[10] Quadratic and Hermitian forms, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 270 (1985), pp. x+421 | MR 770063 | Zbl 0584.10010