Nous étudions les -ensembles finis et leur produit tensoriel avec des variétés Riemanniennes et obtenons certains résultats sur les quotients et revêtements isospectraux. Nous démontrons en particulier le théorème suivant : Soit une variété (ou orbifold) Riemannienne compacte et connexe dont le groupe fondamental possède un quotient fini non cyclique. Alors admet des revêtements isospectraux non isométriques.
We study finite -sets and their tensor product with Riemannian manifolds, and obtain results on isospectral quotients and covers. In particular, we show the following: If is a compact connected Riemannian manifold (or orbifold) whose fundamental group has a finite non-cyclic quotient, then has isospectral non-isometric covers.
@article{AIF_2013__63_6_2307_0, author = {Parzanchevski, Ori}, title = {On $G$-sets and isospectrality}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {2307-2329}, doi = {10.5802/aif.2831}, zbl = {06325435}, mrnumber = {3237449}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_6_2307_0} }
Parzanchevski, Ori. On $G$-sets and isospectrality. Annales de l'Institut Fourier, Tome 63 (2013) pp. 2307-2329. doi : 10.5802/aif.2831. http://gdmltest.u-ga.fr/item/AIF_2013__63_6_2307_0/
[1] The isospectral fruits of representation theory: quantum graphs and drums, Journal of Physics A: Mathematical and Theoretical, Tome 42 (2009), pp. 175202 | Article | MR 2539297 | Zbl 1176.58019
[2] Transplantation et isospectralité I, Mathematische Annalen, Tome 292 (1992) no. 1, pp. 547-559 | Article | MR 1152950 | Zbl 0735.58008
[3] Some relations between graph theory and Riemann surfaces, Isr. Math. Conf. Proc. 11, Citeseer (1996) | MR 1476704 | Zbl 0890.30027
[4] Isospectral Riemann surfaces, Ann. Inst. Fourier, Tome 36 (1986) no. 2, pp. 167-192 | Article | Numdam | MR 850750 | Zbl 0579.53036
[5] Some planar isospectral domains, International Mathematics Research Notices, Tome 1994 (1994) no. 9, pp. 391-400 | Article | MR 1301439 | Zbl 0837.58033
[6] Drums that sound the same, American Mathematical Monthly, Tome 102 (1995) no. 2, pp. 124-138 | Article | MR 1315592 | Zbl 0849.35084
[7] Isospectral deformations II: Trace formulas, metrics, and potentials, Communications on Pure and Applied Mathematics, Tome 42 (1989) no. 8, pp. 1067-1095 | Article | MR 1029118 | Zbl 0709.53030
[8] On the Order of a Group Containing Nontrivial Gassmann Equivalent Subgroups, Rose-Hulman Undergraduate Mathematics Journal, Tome 10 (2009) no. 1
[9] Laplace-isospectral hyperbolic 2-orbifolds are representation-equivalent, Arxiv preprint arXiv:1103.4372 (2011)
[10] GAP – Groups, Algorithms, and Programming, Version 4.4.12, The GAP Group (2008) http://www.gap-system.org
[11] Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z, Tome 25 (1926), pp. 124-143
[12] One cannot hear the shape of a drum, American Mathematical Society, Tome 27 (1992) no. 1 | MR 1136137 | Zbl 0756.58049
[13] The theory of groups, Chelsea Pub Co (1976) | MR 414669 | Zbl 0354.20001
[14] Spectral decomposition of square-tiled surfaces, Mathematische Zeitschrift, Tome 260 (2008) no. 2, pp. 393-408 | Article | MR 2429619 | Zbl 1156.58012
[15] Can one hear the shape of a drum?, The american mathematical monthly, Tome 73 (1966) no. 4, pp. 1-23 | Article | MR 201237 | Zbl 0139.05603
[16] Determining a semisimple group from its representation degrees, International Mathematics Research Notices, Tome 2004 (2004) no. 38, pp. 1989 | Article | MR 2063567 | Zbl 1073.22009
[17] Relative discrete spectrum and joinings, Monatshefte für Mathematik, Tome 137 (2002) no. 1, pp. 57-75 | Article | MR 1930996 | Zbl 1090.37002
[18] Gassmann Equivalent Dessins, Communications in Algebra®, Tome 38 (2010) no. 6, pp. 2129-2137 | Article | MR 2675525 | Zbl 1246.11126
[19] Eigenvalues of the Laplace operator on certain manifolds, Proceedings of the National Academy of Sciences of the United States of America, Tome 51 (1964) no. 4, pp. 542 | Article | MR 162204 | Zbl 0124.31202
[20] Linear representations and isospectrality with boundary conditions, Journal of Geometric Analysis, Tome 20 (2010) no. 2, pp. 439-471 | Article | MR 2579517 | Zbl 1187.58032
[21] Linear representations of finite groups, Springer Verlag Tome 42 (1977) | MR 450380 | Zbl 0355.20006
[22] Quantum graphs which sound the same, Non-linear dynamics and fundamental interactions (2006), pp. 17-29 | Article | Zbl 1132.37312
[23] Zeta functions of finite graphs and coverings, part II, Advances in Mathematics, Tome 154 (2000) no. 1, pp. 132-195 | Article | MR 1780097 | Zbl 0972.11086
[24] Riemannian coverings and isospectral manifolds, The Annals of Mathematics, Tome 121 (1985) no. 1, pp. 169-186 | Article | MR 782558 | Zbl 0585.58047