On prouve qu’une 3-orbifold close qui fibre sur une 2-orbifold hyperbolique et polygonale admet une famille de structures coniques hyperboliques qu’on voit comme une régénérescence du polygone, pourvu que son périmètre soit minimal.
We prove that a closed 3-orbifold that fibers over a hyperbolic polygonal 2-orbifold admits a family of hyperbolic cone structures that are viewed as regenerations of the polygon, provided that the perimeter is minimal.
@article{AIF_2013__63_5_1971_0, author = {Porti, Joan}, title = {Regenerating hyperbolic cone 3-manifolds from dimension 2}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1971-2015}, doi = {10.5802/aif.2820}, zbl = {1293.57012}, mrnumber = {3186514}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_5_1971_0} }
Porti, Joan. Regenerating hyperbolic cone 3-manifolds from dimension 2. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1971-2015. doi : 10.5802/aif.2820. http://gdmltest.u-ga.fr/item/AIF_2013__63_5_1971_0/
[1] Déformation de structures hyperboliques coniques (Thèse, Université Paul Sabatier, Toulouse, 2009)
[2] Uniformization of small 3-orbifolds, C. R. Acad. Sci. Paris Sér. I Math., Tome 332 (2001) no. 1, pp. 57-62 | Article | MR 1805628 | Zbl 0976.57017
[3] Geometrization of 3-dimensional orbifolds, Ann. of Math. (2), Tome 162 (2005) no. 1, pp. 195-290 | Article | MR 2178962 | Zbl 1087.57009
[4] Geometrization of 3-orbifolds of cyclic type, Astérisque (2001) no. 272, pp. 208 (Appendix A by Michael Heusener and Porti) | MR 1844891
[5] The classification of Seifert fibred -orbifolds, Low-dimensional topology (Chelwood Gate, 1982), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 95 (1985), pp. 19-85 | MR 827297 | Zbl 0571.57011
[6] Three-dimensional orbifolds and cone-manifolds, Mathematical Society of Japan, Tokyo, MSJ Memoirs, Tome 5 (2000) (With a postface by Sadayoshi Kojima) | MR 1778789 | Zbl 0955.57014
[7] Lifting representations to covering groups, Adv. in Math., Tome 59 (1986) no. 1, pp. 64-70 | Article | MR 825087 | Zbl 0582.57001
[8] Varieties of group representations and splittings of -manifolds, Ann. of Math. (2), Tome 117 (1983) no. 1, pp. 109-146 | Article | MR 683804 | Zbl 0529.57005
[9] Geometric transitions: from hyperbolic to AdS geometry (Thesis, Stanford University, 2011)
[10] Elementary geometry in hyperbolic space, Walter de Gruyter & Co., Berlin, de Gruyter Studies in Mathematics, Tome 11 (1989) (With an editorial by Heinz Bauer) | MR 1004006 | Zbl 0674.51001
[11] Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not. (2004) no. 9, pp. 425-459 | Article | MR 2040346 | Zbl 1088.57015
[12] The symplectic nature of fundamental groups of surfaces, Adv. in Math., Tome 54 (1984) no. 2, pp. 200-225 | Article | MR 762512 | Zbl 0574.32032
[13] Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math., Tome 85 (1986) no. 2, pp. 263-302 | Article | MR 846929 | Zbl 0619.58021
[14] The complex-symplectic geometry of -characters over surfaces, Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai (2004), pp. 375-407 | MR 2094117 | Zbl 1089.53060
[15] On the character variety of group representations in and , Math. Z., Tome 214 (1993) no. 4, pp. 627-652 | Article | MR 1248117 | Zbl 0799.20040
[16] The variety of characters in , Bol. Soc. Mat. Mexicana (3), Tome 10 (2004) no. Special Issue, pp. 221-237 | MR 2199350 | Zbl 1100.57014
[17] Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds (Thesis, Princeton University, 1986)
[18] Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 183 (2001) | MR 1792613 | Zbl 1180.57001
[19] The Nielsen realization problem, Ann. of Math. (2), Tome 117 (1983) no. 2, pp. 235-265 | Article | MR 690845 | Zbl 0528.57008
[20] Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Tome 58 (1985) no. 336, pp. xi+117 | MR 818915 | Zbl 0598.14042
[21] Outer circles, Cambridge University Press, Cambridge (2007) (An introduction to hyperbolic 3-manifolds) | Article | MR 2355387 | Zbl 1149.57030
[22] Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology, Tome 37 (1998) no. 2, pp. 365-392 | Article | MR 1489209 | Zbl 0897.58042
[23] Hyperbolic polygons of minimal perimeter with given angles, Geom. Dedicata, Tome 156 (2012), pp. 165-170 | Article | MR 2863552 | Zbl 1236.51012
[24] Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc., Tome 359 (2007) no. 5, pp. 2155-2189 | Article | MR 2276616 | Zbl 1126.53041
[25] Remarks on the cohomology of groups, Ann. of Math. (2), Tome 80 (1964), pp. 149-157 | Article | MR 169956 | Zbl 0192.12802
[26] Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Tome 71 (2005) no. 3, pp. 437-506 | MR 2198808 | Zbl 1098.53038
[27] Global rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Tome 76 (2007) no. 3, pp. 495-523 http://projecteuclid.org/getRecord?id=euclid.jdg/1180135696 | MR 2331529 | Zbl 1184.53049
[28] The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than (arXiv:0904.4568, 2009, to appear in Geom. and Top) | MR 3035330 | Zbl 1262.53032