En suivant Favre, on dit qu’un germe holomorphe est rigide si l’union de l’ensemble critique de tous ses itérés est à croisement normaux. Nous donnons une classification partielle des germes rigides contractants en toute dimension à conjugaison holomorphe près. On trouve des nouveaux phénomènes de résonance, entre la différentielle de et son action linéaire sur le groupe fondamental du complémentaire de l’ensemble critique.
Following Favre, we define a holomorphic germ to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of and its linear action on the fundamental group of the complement of the critical set.
@article{AIF_2013__63_5_1913_0, author = {Ruggiero, Matteo}, title = {Contracting rigid germs in higher dimensions}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1913-1950}, doi = {10.5802/aif.2818}, zbl = {06284536}, mrnumber = {3186512}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_5_1913_0} }
Ruggiero, Matteo. Contracting rigid germs in higher dimensions. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1913-1950. doi : 10.5802/aif.2818. http://gdmltest.u-ga.fr/item/AIF_2013__63_5_1913_0/
[1] Formal Poincaré-Dulac renormalization for holomorphic germs (to appear in Disc. Cont. Dyn. Syst. (2012). Preprint available at http://arxiv.org/abs/1008.0272) | Zbl pre06157277
[2] Formal normal forms for holomorphic maps tangent to the identity, Discrete Contin. Dyn. Syst., (suppl.) (2005), pp. 1-10 | MR 2192654 | Zbl 1144.37435
[3] Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6), Tome 15 (2006) no. 3, pp. 427-483 | Article | Numdam | MR 2246412 | Zbl 1123.37019
[4] Structure des surfaces de Kato, Mém. Soc. Math. France (N.S.), Tome 14 (1984) | Numdam | MR 763959 | Zbl 0543.32012
[5] Sur la classification des germes d’applications holomorphes contractantes, Math. Ann., Tome 280 (1988) no. 4, pp. 649-661 | Article | MR 939924 | Zbl 0677.32004
[6] Class surfaces with curves, Tohoku Math. J. (2), Tome 55 (2003) no. 2, pp. 283-309 | Article | MR 1979500 | Zbl 1034.32012
[7] Classification of 2-dimensional contracting rigid germs and Kato surfaces. I, J. Math. Pures Appl. (9), Tome 79 (2000) no. 5, pp. 475-514 | Article | MR 1759437 | Zbl 0983.32023
[8] Eigenvaluations, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 2, pp. 309-349 | Numdam | MR 2339287 | Zbl 1135.37018
[9] Compact complex manifolds containing “global” spherical shells. I, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo (1978), pp. 45-84 | MR 578853 | Zbl 0421.32010
[10] On compact complex -folds with lines, Japan. J. Math. (N.S.), Tome 11 (1985) no. 1, pp. 1-58 | MR 877456 | Zbl 0588.32032
[11] Compact complex threefolds of class associated to polynomial automorphisms of , Publ. Mat., Tome 50 (2006) no. 2, pp. 401-411 | Article | MR 2273667 | Zbl 1118.32017
[12] Torus actions in the normalization problem, J. Geom. Anal., Tome 20 (2010) no. 2, pp. 472-524 | Article | MR 2579518 | Zbl 1203.37083
[13] Holomorphic maps from to , Trans. Amer. Math. Soc., Tome 210 (1988) no. 1, pp. 47-86 | MR 929658 | Zbl 0708.58003
[14] Rigidification of holomorphic germs with non-invertible differential, Michigan Math. J., Tome 60 (2011) | Zbl pre06141594
[15] Local contractions and a theorem of Poincaré, Amer. J. Math., Tome 79 (1957), pp. 809-824 | Article | MR 96853 | Zbl 0080.29902