Soient et deux nombres premiers distincts et le quotient de la courbe de Shimura de discriminant par l’involution d’Atkin-Lehner . Nous décrivons un moyen permettant de vérifier un critère de Parent et Yafaev en grande généralité pour prouver que si et satisfont des conditions de congruence explicites, connues comme les conditions du cas non ramifié de Ogg, et si est assez grand par rapport à , alors le quotient n’a pas de point rationnel non spécial.
Let and be two distinct prime numbers, and be the quotient of the Shimura curve of discriminant by the Atkin-Lehner involution . We describe a way to verify in wide generality a criterion of Parent and Yafaev to prove that if and satisfy some explicite congruence conditions, known as the conditions of the non ramified case of Ogg, and if is large enough compared to , then the quotient has no rational point, except possibly special points.
@article{AIF_2013__63_4_1613_0, author = {Gillibert, Florence}, title = {Points rationnels sur les quotients d'Atkin-Lehner de courbes de Shimura de discriminant $pq$}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1613-1649}, doi = {10.5802/aif.2810}, zbl = {06359596}, mrnumber = {3137362}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_4_1613_0} }
Gillibert, Florence. Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant $pq$. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1613-1649. doi : 10.5802/aif.2810. http://gdmltest.u-ga.fr/item/AIF_2013__63_4_1613_0/
[1] Néron models, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 21 (1990) | MR 1045822 | Zbl 0705.14001
[2] On finiteness conjectures for endomorphism algebras of abelian surfaces, Math. Proc. Cambridge Philos. Soc., Tome 141 (2006) no. 3, pp. 383-408 | Article | MR 2281405 | Zbl 1116.14042
[3] Local and global points on moduli spaces of potentially quaternionic abelian surfaces, Harvard University (2003) (Ph. D. Thesis)
[4] Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin (1973), p. 143-316. Lecture Notes in Math., Vol. 349 | MR 330050 | Zbl 0281.14010
[5] On Néron models, divisors and modular curves, J. Ramanujan Math. Soc., Tome 13 (1998) no. 2, pp. 157-194 | MR 1666374 | Zbl 0931.11021
[6] Heights and the special values of -series, Number theory (Montreal, Que., 1985), Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) Tome 7 (1987), pp. 115-187 | MR 894322 | Zbl 0623.10019
[7] Groupes de monodromie en géométrie algébrique (SGA7-I), Lecture Notes in Math., Springer Tome 288 (1972) | MR 354656
[8] On the Néron model of Jacobians of Shimura curves, Compositio Math., Tome 60 (1986) no. 2, pp. 227-236 | Numdam | MR 868139 | Zbl 0609.14018
[9] On the non-existence of exceptional automorphisms on Shimura curves, Bull. Lond. Math. Soc., Tome 40 (2008) no. 3, pp. 363-374 | Article | MR 2418792 | Zbl 1151.11026
[10] Determination of modular forms by twists of critical -values, Invent. Math., Tome 130 (1997) no. 2, pp. 371-398 | Article | MR 1474162 | Zbl 0905.11024
[11] Specialisation of Heegner points and applications, Universitat Politècnica de Catalunya (2010) (Ph. D. Thesis)
[12] Mauvaise réduction des courbes de Shimura, Séminaire de théorie des nombres, Paris 1983–84, Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 59 (1985), pp. 199-217 | MR 902833 | Zbl 0581.14024
[13] Towards the triviality of for , Compos. Math., Tome 141 (2005) no. 3, pp. 561-572 | Article | MR 2135276 | Zbl 1167.11310
[14] Proving the triviality of rational points on Atkin-Lehner quotients of Shimura curves, Math. Ann., Tome 339 (2007) no. 4, pp. 915-935 | Article | MR 2341907 | Zbl 1129.14036
[15] On modular representations of arising from modular forms, Invent. Math., Tome 100 (1990) no. 2, pp. 431-476 | Article | MR 1047143 | Zbl 0773.11039
[16] Which quaternion algebras act on a modular abelian variety ?, Math. Res. Lett., Tome 15 (2008) no. 2, pp. 251-263 | Article | MR 2385638 | Zbl 1226.11067
[17] Failure of the Hasse principle for Atkin-Lehner quotients of Shimura curves over , Mosc. Math. J., Tome 5 (2005) no. 2, p. 463-476, 495 | MR 2200761 | Zbl 1087.11042
[18] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo (1971) (Kanô Memorial Lectures, No. 1) | MR 314766 | Zbl 0221.10029
[19] The arithmetic of elliptic curves, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 106 (1992) (Corrected reprint of the 1986 original) | MR 1329092 | Zbl 0585.14026
[20] Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 151 (1994) | Article | MR 1312368 | Zbl 0911.14015
[21] Galois representations over fields of moduli and rational points on Shimura curves (preprint available at : http ://www-ma2.upc.edu/vrotger/docs/students/dV-R.pdf)
[22] Arithmétique des algèbres de quaternions, Springer, Berlin, Lecture Notes in Mathematics, Tome 800 (1980) | MR 580949 | Zbl 0422.12008