Analytic invariants for the 1:-1 resonance
[Invariants analytiqués pour le 1:-1 résonance]
Gaivão, José Pedro
Annales de l'Institut Fourier, Tome 63 (2013), p. 1367-1426 / Harvested from Numdam

Etant donnés des champs de vecteurs Hamiltoniens analytiques dans 4 ayant un point d’équilibre satisfaisant une résonance 1:-1 non semisimple, nous construisons deux constantes qui sont invariantes relativement aux changements de coordonnées symplectiques analytiques. Ces invariants sont égaux à zéro lorsque l’Hamiltonien est intégrable. Nous montrons également que ces invariants sont différents de zéro dans un ensemble ouvert et dense.

Associated to analytic Hamiltonian vector fields in 4 having an equilibrium point satisfying a non semisimple 1:-1 resonance, we construct two constants that are invariant with respect to local analytic symplectic changes of coordinates. These invariants vanish when the Hamiltonian is integrable. We also prove that one of these invariants does not vanish on an open and dense set.

Publié le : 2013-01-01
DOI : https://doi.org/10.5802/aif.2806
Classification:  37J20,  34M40,  34M30
Mots clés: classification analytique, phénomène de Stokes, l’écart des séparatrices
@article{AIF_2013__63_4_1367_0,
     author = {Gaiv\~ao, Jos\'e Pedro},
     title = {Analytic invariants for the $1:-1$ resonance},
     journal = {Annales de l'Institut Fourier},
     volume = {63},
     year = {2013},
     pages = {1367-1426},
     doi = {10.5802/aif.2806},
     zbl = {06359592},
     mrnumber = {3137358},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2013__63_4_1367_0}
}
Gaivão, José Pedro. Analytic invariants for the $1:-1$ resonance. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1367-1426. doi : 10.5802/aif.2806. http://gdmltest.u-ga.fr/item/AIF_2013__63_4_1367_0/

[1] Baldomá, I.; Seara, T. M. The inner equation for generic analytic unfoldings of the Hopf-zero singularity, Discrete Contin. Dyn. Syst. Ser. B, Tome 10 (2008) no. 2-3, pp. 323-347 | MR 2425046 | Zbl 1162.34033

[2] Burgoyne, N.; Cushman, R. Normal forms for real linear hamiltonian systems with purely imaginary eigenvalues, Celestial Mechanics, Tome 8 (1974), pp. 435-443 | Article | MR 339591 | Zbl 0286.34053

[3] Chapman, S. J.; King, J. R.; Adams, K. L. Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., Tome 454 (1998) no. 1978, pp. 2733-2755 | Article | MR 1650775 | Zbl 0916.34017

[4] Devaney, Robert L. Homoclinic orbits in Hamiltonian systems, Differential Equations, Tome 21 (1976) no. 2, pp. 431-438 | MR 442990 | Zbl 0343.58005

[5] Dieudonne, J. Foundations of modern analysis, Academic Press, New York and London (1969) | MR 349288 | Zbl 0176.00502

[6] Écalle, J. Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble), Tome 42 (1992) no. 1-2, pp. 73-164 | Article | Numdam | MR 1162558 | Zbl 0940.32013

[7] Folland, Gerald B. Introduction to partial differential equations, Princeton University Press, Princeton, NJ, (1995) | MR 1357411 | Zbl 0841.35001

[8] Gaivao, J. P. Exponentially small splitting of invariant manifolds near a Hamiltonian-Hopf bifurcation, University of Warwick (2010) (Ph. D. Thesis)

[9] Gaivao, J. P.; Gelfreich, V. Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example, Nonlinearity, Tome 24 (2011) no. 3, pp. 677-698 | Article | MR 2765480 | Zbl 05869305 | Zbl pre05869305

[10] Gelfreich, V. Reference systems for splittings of separatrices, Nonlinearity, Tome 10 (1997) no. 1, pp. 175-193 | Article | MR 1430747 | Zbl 0909.70019

[11] Gelfreich, V. A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys., Tome 101 (1999), pp. 155-216 | Article | MR 1669417 | Zbl 1042.37044

[12] Gelfreich, V.; Naudot, V. Analytic invariants associated with a parabolic fixed point in 2 , Ergodic Theory and Dynamical Systems, Tome 28 (2008) no. 6, pp. 1815-1848 | Article | MR 2465601 | Zbl 1153.37376

[13] Gelfreich, V.; Sauzin, D. Borel summation and splitting of separatrices for the hénon map, Annales de l’institut Fourier, Tome 51 (2001) no. 2, p. 513-267 | Article | Numdam | MR 1824963 | Zbl 0988.37031

[14] Gelfreich, V. G. Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps, Phys. D, Tome 136 (2000) no. 3-4, pp. 266-279 | Article | MR 1733057 | Zbl 0942.37016

[15] Glebsky, L. Yu.; M., Lerman On small stationary localized solutions for the generalized 1d swift-hohenberg equation, Chaos: Internat. J. Nonlin. Sci., Tome 5 (1995) no. 2 | Article | Zbl 0952.37021

[16] Lazutkin, V. F. An analytic integral along the separatrix of the semistandard map: existence and an exponential estimate for the distance between the stable and unstable separatrices, Algebra i Analiz, Tome 4 (1992) no. 4, pp. 110-142 | MR 1190785 | Zbl 0768.58017

[17] Lazutkin, V. F. Splitting of separatrices for the chirikov standard map, VINITI ((Moscow 1984)) no. 6372/84

[18] Lerman, L. M. Dynamical phenomena near a saddle-focus homoclinic connection in a Hamiltonian system, J. Statist. Phys., Tome 101 (2000) no. 1-2, pp. 357-372 | Article | MR 1807550 | Zbl 1003.37036

[19] Lerman, L. M.; Belyakov, L. A. Stationary localized solutions, fronts and traveling fronts to the generalized 1d swift-hohenberg equation, EQUADIFF 2003: Proceedings of the International Conference on Differential Equations (2003), pp. 801-806 | MR 2185131 | Zbl 1105.35317

[20] Lerman, L. M.; Markova, A. P. On stability at the Hamiltonian Hopf bifurcation, Regul. Chaotic Dyn., Tome 14 (2009) no. 1, pp. 148-162 | Article | MR 2480956 | Zbl 1229.37056

[21] Lochak, J.-P. P. Marco; Sauzin, D. On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems, Mem. Amer. Math. Soc., Tome 163 (2003, no. 775) | MR 1964346 | Zbl 1038.70001

[22] Martín, P.; Sauzin, D.; Seara, T. M. Resurgence of inner solutions for perturbations of the McMillan map, Discrete Contin. Dyn. Syst., Tome 31 (2011) no. 1, pp. 165-207 | Article | MR 2805805 | Zbl 1230.37069

[23] Martinet, J.; Ramis, J.-P. Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Études Sci. Publ. Math., Tome 55 (1982), pp. 63-164 | Article | Numdam | MR 672182 | Zbl 0546.58038

[24] Mcswiggen, P. D.; Meyer, K. R. The evolution of invariant manifolds in Hamiltonian-Hopf bifurcations, Journal of Differential Equations, Tome 189 (2003), pp. 538-555 | Article | MR 1964479 | Zbl 1024.37035

[25] Olivé, C.; Sauzin, D.; Seara, T. M. Resurgence in a Hamilton-Jacobi equation, Ann. Inst. Fourier (Grenoble), Tome 53 (2003) no. 4, pp. 1185-1235 | Article | Numdam | MR 2033513 | Zbl 1077.34086

[26] Sauzin, D. A new method for measuring the splitting of invariant manifolds, Ann. Sci. École Norm. Sup. (4), Tome 34 (2001) no. 2, pp. 159-221 | Numdam | MR 1841877 | Zbl 0987.37061

[27] Sauzin, D. Resurgent functions and splitting problems, New Trends and Applications of Complex Asymptotic Analysis: Around Dynamical Systems, Summability, Continued Fractions, Res. Inst. Math. Sci., Kyoto (RIMS Kôkyûroku) Tome 1493 (2006), pp. 48-117

[28] Sokol’Skiĭ, A. G. On the stability of an autonomous Hamiltonian system with two degrees of freedom in the case of equal frequencies, Prikl. Mat. Meh., Tome 38 (1974), pp. 791-799 | MR 391638 | Zbl 0336.70017

[29] Stolovitch, L. Classification analytique de champs de vecteurs 1-résonnants de (C n ,0), Asymptotic Anal., Tome 12 (1996), pp. 91-143 | MR 1386227 | Zbl 0852.58013

[30] Van Der Meer, Jan-Cees The Hamiltonian Hopf bifurcation, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1160 (1985) | MR 815106 | Zbl 0585.58019

[31] Zung, N. T. Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2), Tome 161 (2005) no. 1, pp. 141-156 | Article | MR 2150385 | Zbl 1076.37045