Soient des fibrés en droites holomorphes sur des variétés complexes compactes, pour . Soit le fibré en cercles associé par rapport à un produit scalaire hermitienne sur . On construit des structures complexes sur dites de type scalaire, diagonal, ou linéaire. Bien que des structures de type scalaire existent toujours, on construit des structures plus générales de type diagonal mais non-scalaire dans le cas où les sont des fibrés équivariants qui vérifient certaines hypothèses supplémentaires. Les structures complexes de type linéaire sont des variétés des drapeaux (généralisées) et les sont des fibrés en droites amples négatifs. Lorsque et est non-nulle la variété compacte n’admet pas de structure symplectique et donc elle est non-Kählerienne par rapport à toute structure complexe.
On montre que s’annule quand les sont des variétés projectives, les son très amples et le cône sur par rapport au plongement projectif défini par sont Cohen-Macaulay. On applique ces résultats au groupe de Picard de . Quand où sont les sousgroupes paraboliques maximaux et la variété est munie d’une structure complexe du type linéaire avec « la partie unipotente nulle » on montre que le corps des fonctions méromorphes sur est purement transcendental sur .
Let be a holomorphic line bundle over a compact complex manifold for . Let denote the associated principal circle-bundle with respect to some hermitian inner product on . We construct complex structures on which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that are equivariant -bundles satisfying some additional conditions. The linear type complex structures are constructed assuming are (generalized) flag varieties and negative ample line bundles over . When and is non-zero, the compact manifold does not admit any symplectic structure and hence it is non-Kähler with respect to any complex structure.
We obtain a vanishing theorem for when are projective manifolds, are very ample and the cone over with respect to the projective imbedding defined by are Cohen-Macaulay. We obtain applications to the Picard group of . When where are maximal parabolic subgroups and is endowed with linear type complex structure with “vanishing unipotent part” we show that the field of meromorphic functions on is purely transcendental over .
@article{AIF_2013__63_4_1331_0, author = {Sankaran, Parameswaran and Thakur, Ajay Singh}, title = {Complex structures on product of circle bundles over complex manifolds}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1331-1366}, doi = {10.5802/aif.2805}, zbl = {06359591}, mrnumber = {3137357}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_4_1331_0} }
Sankaran, Parameswaran; Thakur, Ajay Singh. Complex structures on product of circle bundles over complex manifolds. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1331-1366. doi : 10.5802/aif.2805. http://gdmltest.u-ga.fr/item/AIF_2013__63_4_1331_0/
[1] Ordinary differential equations, Springer-Verlag, Berlin, Second printing of the 1992 edition. Universitext (2006) | MR 2242407 | Zbl 0432.34001
[2] Algebraic methods in the global theory of of complex spaces, John Wiley, London (1976) | MR 463470 | Zbl 0334.32001
[3] Some remarks on deformations of Hopf manifolds, Rev. Roum. Math., Tome 26 (1981), pp. 1287-1294 | MR 646396 | Zbl 0543.32010
[4] Variétés complexes compactes: une généralisation de la construction de Meersseman et López de Medrano-Verjovsky, Ann. Inst. Fourier (Grenoble), Tome 51 (2001) no. 5, pp. 1259-1297 | Article | Numdam | MR 1860666 | Zbl 0994.32018
[5] A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2), Tome 58 (1953), pp. 494-500 | Article | MR 57539 | Zbl 0051.40304
[6] Formule di Künneth per la coomologia a valori in an fascio, Annali della Scuola Normale Superiore di Pisa, Tome 27 (1973), pp. 905-931 | Numdam | MR 374476 | Zbl 0335.55006
[7]
(Séminaire H. Cartan, exp. 3 (1960/61))[8] Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Compositio Math., Tome 55 (1985), pp. 241-251 | Numdam | MR 795716 | Zbl 0582.32026
[9] Zur Topologie der komplexen Mannigfaltigkeiten, New York, Courant Anniversary Volume (1948) | MR 23054 | Zbl 0033.02501
[10] Linear algebraic groups, Springer-Verlag, New York, Graduate Texts in Math (1975) | MR 396773 | Zbl 0471.20029
[11] On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math., Tome 71 (1960), pp. 43-76 | Article | MR 115189 | Zbl 0128.16902
[12] A new family of complex, compact, non-symplectic manifolds, Bol. Soc. Brasil. Mat. (N.S.), Tome 28 (1997) no. 2, pp. 253-269 | Article | MR 1479504 | Zbl 0901.53021
[13] Singular locus of a Schubert variety, Bull. Amer. Math. Soc., Tome 11 (1984), pp. 363-366 | Article | MR 752799 | Zbl 0549.14016
[14] Holomorphic flows and complex structures on products of odd-dimensional spheres, Math. Ann., Tome 306 (1996) no. 4, pp. 781-817 | Article | MR 1418353 | Zbl 0860.32001
[15] A new geometric construction of compact complex manifolds in any dimension, Math. Ann., Tome 317 (2000) no. 1, pp. 79-115 | Article | MR 1760670 | Zbl 0958.32013
[16] Holomorphic principal bundles over projective toric varieties, J. Reine Angew. Math., Tome 572 (2004), pp. 57-96 | MR 2076120 | Zbl 1070.14047
[17] Modifications, Several complex variables, VII, Springer, Berlin (Encyclopaedia Math. Sci.) Tome 74 (1994), pp. 285-317 | MR 1326617 | Zbl 0807.32028
[18] Nuclear locally convex spaces, Springer-Verlag, New York – Heidelberg, Translated from the second German edition by William H. Ruckle. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band, Tome 66 (1972) | MR 350360 | Zbl 0236.46001
[19] Projective normality of flag varieties and Schubert varieties, Invent. Math., Tome 79 (1985) no. 2, pp. 217-224 | Article | MR 778124 | Zbl 0553.14023
[20] Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., Tome 80 (1985) no. 2, pp. 283-294 | Article | MR 788411 | Zbl 0541.14039
[21] Dolbeault cohomology of compact complex homogeneous manifolds, Proc. Indian Acad. Sci. Math. Sci., Tome 109 (1999) no. 1, pp. 11-21 | MR 1687024 | Zbl 0935.32017
[22] A coincidence theorem for holomorphic maps to , Canad. Math. Bull., Tome 46 (2003) no. 2, pp. 291-298 | Article | MR 1981683 | Zbl 1038.55002
[23] Closed manifolds with homogeneous complex structure, Amer. J. Math., Tome 76 (1954), pp. 1-32 | Article | MR 66011 | Zbl 0055.16603