Nous montrons que tous les automorphismes du groupe des automorphismes polynomiaux de l’espace affine sont des automorphismes intérieurs modulo des automorphismes du corps , si nous nous restreignons au sous-groupe des automorphismes modérés. Ceci généralise un résultat de Julie Déserti traitant le cas de la dimension . Dans ce cas, tous les automorphismes polynomiaux sont modérés. Nos méthodes sont différentes de celles de Julie Déserti et sont basées sur des arguments d’actions de groupes algébriques.
We show that every automorphism of the group of polynomial automorphisms of complex affine -space is inner up to field automorphisms when restricted to the subgroup of tame automorphisms. This generalizes a result of Julie Deserti who proved this in dimension where all automorphisms are tame: . The methods are different, based on arguments from algebraic group actions.
@article{AIF_2013__63_3_1137_0, author = {Kraft, Hanspeter and Stampfli, Immanuel}, title = {On Automorphisms of the Affine Cremona Group}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1137-1148}, doi = {10.5802/aif.2785}, zbl = {1297.14059}, mrnumber = {3137481}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_3_1137_0} }
Kraft, Hanspeter; Stampfli, Immanuel. On Automorphisms of the Affine Cremona Group. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1137-1148. doi : 10.5802/aif.2785. http://gdmltest.u-ga.fr/item/AIF_2013__63_3_1137_0/
[1] The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.), Tome 7 (1982) no. 2, pp. 287-330 | Article | MR 663785 | Zbl 0539.13012
[2] Remarks on the action of an algebraic torus on , Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Tome 14 (1966), pp. 177-181 | MR 200279 | Zbl 0163.42901
[3] Sur le groupe des automorphismes polynomiaux du plan affine, J. Algebra, Tome 297 (2006), pp. 584-599 | Article | MR 2209276 | Zbl 1096.14046
[4] Fixed point schemes, Amer. J. Math., Tome 95 (1973), pp. 35-51 | Article | MR 332805 | Zbl 0272.14012
[5] Semisimple group actions on the three-dimensional affine space are linear, Comment. Math. Helv., Tome 60 (1985) no. 3, pp. 466-479 | Article | MR 814152 | Zbl 0645.14020
[6] Families of group actions, generic isotriviality, and linearization (2011) (preprint, submitted to Tranformation Groups)
[7] Reductive group actions with one-dimensional quotient, Inst. Hautes Études Sci. Publ. Math. (1992) no. 76, pp. 1-97 | Article | Numdam | MR 1215592 | Zbl 0783.14026
[8] Kac-Moody groups, their flag varieties and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 204 (2002) | Article | MR 1923198 | Zbl 1026.17030
[9] Roots of the affine Cremona group, Transform. Groups, Tome 16 (2011) no. 4, pp. 1137-1142 | Article | MR 2852493 | Zbl 1255.14036
[10] How to use finite fields for problems concerning infinite fields, Arithmetic, geometry, cryptography and coding theory, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 487 (2009), pp. 183-193 | Article | MR 2555994 | Zbl 1199.14007
[11] A theorem on fixed points for periodic transformations, Ann. of Math. (2), Tome 35 (1934) no. 3, pp. 572-578 | Article | MR 1503180 | Zbl 0009.41101