Soit un anneau de valuation discrète de caractéristique mixte , de corps résiduel . Utilisant un travail de Sekiguchi et Suwa, nous construisons des modèles finis plats sur du schéma en groupes des racines -ièmes de l’unité, que nous appelons schémas en groupes de Kummer. Nous développons soigneusement le cadre général et les propriétés algébriques de cette construction. Lorsque est parfait et est une extension complète totalement ramifiée de l’anneau des vecteurs de Witt , nous étudions en parallèle les modules de Breuil-Kisin des modèles finis plats de , de telle manière que les constructions des groupes de Kummer et des modules de Breuil-Kisin peuvent être comparées. Nous calculons ces objets pour . Cela nous mène à conjecturer que tous les modèles finis plats de sont des schémas en groupes de Kummer.
Let be a discrete valuation ring of mixed characteristics , with residue field . Using work of Sekiguchi and Suwa, we construct some finite flat -models of the group scheme of -th roots of unity, which we call Kummer group schemes. We carefully set out the general framework and algebraic properties of this construction. When is perfect and is a complete totally ramified extension of the ring of Witt vectors , we provide a parallel study of the Breuil-Kisin modules of finite flat models of , in such a way that the construction of Kummer groups and Breuil-Kisin modules can be compared. We compute these objects for . This leads us to conjecture that all finite flat models of are Kummer group schemes.
@article{AIF_2013__63_3_1055_0, author = {M\'ezard, A. and Romagny, M. and Tossici, D.}, title = {Models of group schemes of roots of unity}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {1055-1135}, doi = {10.5802/aif.2784}, zbl = {1297.14051}, mrnumber = {3137480}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_3_1055_0} }
Mézard, A.; Romagny, M.; Tossici, D. Models of group schemes of roots of unity. Annales de l'Institut Fourier, Tome 63 (2013) pp. 1055-1135. doi : 10.5802/aif.2784. http://gdmltest.u-ga.fr/item/AIF_2013__63_3_1055_0/
[1] Ramification of local fields with imperfect residue fields I, Amer. J. Math., Tome 124 (2002), pp. 879-920 | Article | MR 1925338 | Zbl 1084.11064
[2] Moduli of Galois covers in mixed characteristics (to appear in Algebra and Number Theory)
[3] Schémas en groupes et corps des normes (unpublished manuscript, September 1998)
[4] Integral -adic Hodge Theory, Algebraic geometry 2000, Azumino (Hotaka), Math. Soc. Japan (Adv. Stud. Pure Math.) Tome 36 (2002), pp. 51-80 | MR 1971512 | Zbl 1046.11085
[5] Cleft extensions of Hopf algebras, Proc. London Math. Soc., Tome 67 (1993), pp. 227-307 | MR 1220775 | Zbl 0795.16026
[6] Estimation des dimensions de certaines variétés de Kisin (preprint, arXiv:1005.2394)
[7] Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, American Mathematical Society, Mathematical Surveys and Monographs, Tome 80 (2000) | MR 1767499 | Zbl 0944.11038
[8] Cyclic Hopf orders defined by isogenies of formal groups, Amer. J. of Math., Tome 125 (2003), pp. 1295-1334 | Article | MR 2018662 | Zbl 1041.16026
[9] Commutative algebra with a view toward algebraic geometry, Springer-Verlag, Graduate Texts in Math., Tome 150 (1995) | MR 1322960 | Zbl 0819.13001
[10] La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Tome 645 (2010), pp. 1-39 | Article | MR 2673421 | Zbl 1199.14015
[11] Représentations -adiques des corps locaux I, The Grothendieck Festschrift, Vol. II, Birkhäuser (Progr. Math.) Tome 87 (1990), pp. 249-309 | MR 1106901 | Zbl 0575.14038
[12] Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring, Math. Z., Tome 210 (1992), pp. 37-67 | Article | MR 1161169 | Zbl 0737.11038
[13] -Elementary group schemes-constructions and Raynaud’s Theory, Hopf algebra, Polynomial formal Groups and Raynaud Orders, Mem. Amer. Soc., Tome 136 (1998), pp. 91-118 | Zbl 0983.14032
[14] On the connected components of moduli spaces of finite flat models (to appear in Amer. J. Math) | Zbl 1205.14025
[15] Arithmetic moduli of elliptic curves, Princeton University Press, Annals of Mathematics Studies, Tome 108 (1985) | MR 772569 | Zbl 0576.14026
[16] Crystalline representations and -crystals, Algebraic geometry and number theory, Birkhäuser (Progr. Math.) Tome 253 (2006), pp. 459-496 | MR 2263197 | Zbl 1184.11052
[17] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Tome 170 (2009) no. 3, pp. 1085-1180 | Article | MR 2600871 | Zbl 1201.14034
[18] Hopf algebra orders determined by group valuations, J. Algebra, Tome 38 (1976) no. 2, pp. 414-452 | Article | MR 404413 | Zbl 0407.20007
[19] A relation between Dieudonné displays and crystalline Dieudonné theory (preprint, arXiv:1006.2720)
[20] The correspondence between Barsotti-Tate groups and Kisin modules when (preprint, (2011))
[21] Cubic forms. Algebra, geometry, arithmetic, North-Holland (1986) | MR 833513 | Zbl 0582.14010
[22] Sekiguchi-Suwa Theory revisited (preprint, (2011))
[23] Effective models of group schemes (to appear in the Journal of Algebraic Geometry)
[24] On the deformation of Artin-Schreier to Kummer, Ann. Sci. École Norm. Sup. (4), Tome 22 (1989) no. 3, pp. 345-375 | Numdam | MR 1011987 | Zbl 0714.14024
[25] On the unified Kummer-Artin-Schreier-Witt Theory (no. 111 in the preprint series of the Laboratoire de Mathématiques Pures de Bordeaux (1999))
[26] A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree , Tohoku Math. J. (2), Tome 53 (2001) no. 2, pp. 203-240 | Article | MR 1829979 | Zbl 1073.14546
[27] Corps Locaux, Hermann (1980) | MR 354618
[28] An introduction to quasigroups and their representations, Chapman & Hall, Studies in Advanced Mathematics (2007) | MR 2268350 | Zbl 1122.20035
[29] Group schemes of prime order, Ann. Sci. Ec. Norm. Sup., Tome 3 (1970), pp. 1-21 | Numdam | MR 265368 | Zbl 0195.50801
[30] Effective models and extension of torsors over a discrete valuation ring of unequal characteristic, Int. Math. Res. Not. IMRN (2008) (Art. ID rnn111, 68 pp) | MR 2448085 | Zbl 1194.14069
[31] Models of over a discrete valuation ring. With an appendix by Xavier Caruso, J. Algebra, Tome 323 (2010) no. 7, pp. 1908-1957 | Article | MR 2594655 | Zbl 1193.14059
[32] -Hopf algebra orders in , J. Alg., Tome 169 (1994), pp. 418-440 | Article | MR 1297158 | Zbl 0820.16036
[33] One-dimensional affine group schemes, J. Algebra, Tome 66 (1980) no. 2, pp. 550-568 | Article | MR 593611 | Zbl 0452.14013