Nous déterminons des équations explicites pour les surfaces elliptiques de type qui ont une section et une fibre singulière maximale. Si la caractéristique du corps sous-jacent est différente de , pour chacun des deux types de fibre maximale, et , la surface est unique. En caractéristique les fibres maximales sont de type ou , et il y a deux, respectivement une, familles -dimensionales de telles surfaces.
We explicitly determine the elliptic surfaces with section and maximal singular fibre. If the characteristic of the ground field is different from , for each of the two possible maximal fibre types, and , the surface is unique. In characteristic the maximal fibre types are and , and there exist two (resp. one) one-parameter families of such surfaces.
@article{AIF_2013__63_2_689_0, author = {Sch\"utt, Matthias and Schweizer, Andreas}, title = {On the uniqueness of elliptic K3 surfaces with maximal singular fibre}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {689-713}, doi = {10.5802/aif.2773}, zbl = {1273.14078}, mrnumber = {3112845}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_2_689_0} }
Schütt, Matthias; Schweizer, Andreas. On the uniqueness of elliptic K3 surfaces with maximal singular fibre. Annales de l'Institut Fourier, Tome 63 (2013) pp. 689-713. doi : 10.5802/aif.2773. http://gdmltest.u-ga.fr/item/AIF_2013__63_2_689_0/
[1] Supersingular surfaces, Ann. Sci. École Norm. Sup. (4), Tome 7 (1974), pp. 543-568 | Numdam | MR 371899 | Zbl 0322.14014
[2] The Shafarevich-Tate conjecture for pencils of elliptic curves on surfaces, Invent. Math., Tome 20 (1973), pp. 249-266 | Article | MR 417182 | Zbl 0289.14003
[3] Explicit calculation of elliptic fibrations of K3-surfaces and their Belyi-maps, Number theory and polynomials, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 352 (2008), pp. 33-51 | MR 2428514 | Zbl pre06093077
[4] Enriques surfaces, Birkhäuser, I. Progress in Math., Tome 76 (1989) | MR 986969 | Zbl 0665.14017
[5] A supersingular K3 surface in characteristic 2 and the Leech lattice, Int. Math. Res. Not. (2003) no. 1, pp. 1-23 | Article | MR 1935564 | Zbl 1061.14031
[6] Mordell-Weil lattices in characteristic 2. I. Construction and first properties, Int. Math. Res. Not. (1994) no. 8, pp. 343-361 | Article | MR 1289579 | Zbl 0813.52017
[7] Local and global ramification properties of elliptic curves in characteristics two and three, Algorithmic Algebra and Number Theory, Berlin-Heidelberg-New York: Springer (1998), pp. 49-64 | MR 1672097 | Zbl 1099.11507
[8] The Diophantine equation (Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969)), pp. 173-198
[9] On compact analytic surfaces II, III, Ann. of Math. (2), Tome 77 (1963), pp. 563-626 (ibid. 78 (1963), 1–40) | Article | MR 184257 | Zbl 0118.15802
[10] Motivic Orthogonal Two-dimensional Representations of Gal, Israel J. Math., Tome 92 (1995), pp. 149-156 | Article | MR 1357749 | Zbl 0847.11035
[11] Configurations of Fibers on Elliptic K3 surfaces, Math. Z., Tome 201 (1989), pp. 339-361 | Article | MR 999732 | Zbl 0694.14019
[12] Reduction of Elliptic Curves in Equal Characteristic, Canad. Math. Bull., Tome 48 (2005), pp. 428-444 | Article | MR 2154085 | Zbl 1100.11018
[13] Inégalité du discriminant pour les pinceaux elliptiques à réductions quelconques, Compositio Math., Tome 120 (2000) no. 1, pp. 83-117 | Article | MR 1738213 | Zbl 1021.11021
[14] A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv., Tome 5 (1972) no. 3, pp. 547-588 | Article | Zbl 0253.14006
[15] Extremal elliptic surfaces in characteristic and , Manuscripta Math., Tome 102 (2000), pp. 505-521 | Article | MR 1785328 | Zbl 0989.14013
[16] The maximal singular fibres of elliptic K3 surfaces, Arch. Math. (Basel), Tome 87 (2006) no. 4, pp. 309-319 | Article | MR 2263477 | Zbl 1111.14034
[17] CM newforms with rational coefficients, Ramanujan J., Tome 19 (2009), pp. 187-205 | Article | MR 2511671 | Zbl 1226.11057
[18] Davenport-Stothers inequalities and elliptic surfaces in positive characteristic, Quarterly J. Math., Tome 59 (2008), pp. 499-522 | Article | MR 2461271 | Zbl 1154.14028
[19] Arithmetic of the [19,1,1,1,1,1] fibration, Comm. Math. Univ. St. Pauli, Tome 55 (2006) no. 1, pp. 9-16 | MR 2251996 | Zbl 1125.14022
[20] On the Mordell-Weil lattices, Comm. Math. Univ. St. Pauli, Tome 39 (1990), pp. 211-240 | MR 1081832 | Zbl 0725.14017
[21] The elliptic K3 surfaces with a maximal singular fibre, C. R. Acad. Sci. Paris, Ser. I, Tome 337 (2003), pp. 461-466 | Article | MR 2023754 | Zbl 1048.14017
[22] Elliptic surfaces and Davenport-Stothers triples, Comment. Math. Univ. St. Pauli, Tome 54 (2005), pp. 49-68 | MR 2153955 | Zbl 1100.14031
[23] On Singular Surfaces, Baily W. L. Jr., Shioda, T. (eds.), Iwanami Shoten, Tokyo (Complex analysis and algebraic geometry) (1977), pp. 119-136 | MR 441982 | Zbl 0374.14006
[24] Advanced Topics in the Arithmetic of Elliptic Curves, Springer GTM, Berlin-Heidelberg-New York (1994) | MR 1312368 | Zbl 0911.14015
[25] Polynomial identities and Hauptmoduln, Quart. J. Math. Oxford (2), Tome 32 (1981), pp. 349-370 | Article | MR 625647 | Zbl 0466.12011
[26] Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper & Row ((Proc. Conf. Purdue Univ., 1963)) (1965), pp. 93-110 | MR 225778 | Zbl 0213.22804
[27] Algorithm for determining the type of a singular fibre in an elliptic pencil, Modular functions of one variable IV ((Antwerpen 1972), SLN) Tome 476 (1975), pp. 33-52 | MR 393039 | Zbl 1214.14020