Nous considérons les déformations de complexes bornés de -modules, sur un corps de caractéristique positive lorsque est un groupe profini. Nous démontrons un théorème de finitude qui fournit des conditions suffisantes pour que la déformation verselle d’un tel complexe puisse être représentée par un complexe de -modules strictement parfait sur l’anneau de déformation verselle associé.
We consider deformations of bounded complexes of modules for a profinite group over a field of positive characteristic. We prove a finiteness theorem which provides some sufficient conditions for the versal deformation of such a complex to be represented by a complex of -modules that is strictly perfect over the associated versal deformation ring.
@article{AIF_2013__63_2_573_0, author = {Bleher, Frauke M. and Chinburg, Ted}, title = {Finiteness Theorems for Deformations of Complexes}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {573-612}, doi = {10.5802/aif.2770}, zbl = {06193041}, mrnumber = {3112842}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_2_573_0} }
Bleher, Frauke M.; Chinburg, Ted. Finiteness Theorems for Deformations of Complexes. Annales de l'Institut Fourier, Tome 63 (2013) pp. 573-612. doi : 10.5802/aif.2770. http://gdmltest.u-ga.fr/item/AIF_2013__63_2_573_0/
[1] Deformations and derived categories, C. R. Math. Acad. Sci. Paris, Tome 334 (2002) no. 2, pp. 97-100 | Article | MR 1885087 | Zbl 1079.11027
[2] Deformations and derived categories, Ann. Inst. Fourier (Grenoble), Tome 55 (2005) no. 7, pp. 2285-2359 | Article | Numdam | MR 2207385 | Zbl 1138.11020
[3] Obstructions for deformations of complexes, Ann. Inst. Fourier (Grenoble), Tome 63 (2013) no. 2, pp. 613-654 | Article
[4] Pseudocompact algebras, profinite groups and class formations, J. Algebra, Tome 4 (1966), pp. 442-470 | Article | MR 202790 | Zbl 0146.04702
[5] Des catégories abéliennes, Bull. Soc. Math. France, Tome 90 (1962), pp. 323-348 | Numdam | MR 232821 | Zbl 0201.35602
[6] Étude infinitesimale des schémas en groupes, A. Grothendieck, SGA 3 (with M. Demazure), Schémas en groupes I, II, III, Springer-Verlag, Heidelberg (Lecture Notes in Mathematics, Vol. 151) (1970), pp. 476-562 | Zbl 0209.24201
[7] The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 208 (1971) | MR 316453 | Zbl 0216.33001
[8] Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0531.14001
[9] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Tome 170 (2009) no. 3, pp. 1085-1180 | Article | MR 2600871 | Zbl 1201.14034
[10] Groupes analytiques -adiques, Inst. Hautes Études Sci. Publ. Math. (1965) no. 26, pp. 389-603 | Numdam | MR 209286 | Zbl 0139.02302
[11] Deforming Galois representations, Galois groups over (Berkeley, CA, 1987), Springer, New York (Math. Sci. Res. Inst. Publ.) Tome 16 (1989), pp. 385-437 | MR 1012172 | Zbl 0714.11076
[12] An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York (1997), pp. 243-311 | MR 1638481 | Zbl 0901.11015
[13] Functors of Artin rings, Trans. Amer. Math. Soc., Tome 130 (1968), pp. 208-222 | Article | MR 217093 | Zbl 0167.49503
[14] Tame coverings of arithmetic schemes, Math. Ann., Tome 322 (2002) no. 1, pp. 1-18 | Article | MR 1883386 | Zbl 1113.14022
[15] Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York (1997), pp. 313-326 | MR 1638482 | Zbl 0907.13010
[16] Catégories derivées, P. Deligne, SGA 4.5, Cohomologie étale, Springer-Verlag, Heidelberg (Lecture Notes in Mathematics, Vol. 569) (1970), pp. 262-311