Soit un groupe unitaire défini sur un corps local non-Archimédien de caractéristique résiduelle impaire et soit le centralisateur d’un élément rationnel semi-simple de l’algèbre de Lie de . Nous démontrons qu’il existe une application affine injective -équivariante de l’immeuble de Bruhat-Tits de vers l’immeuble de Bruhat-Tits de qui préserve les filtrations de Moy-Prasad. La dernière propriété implique l’unicité comme suit : soient et des applications de vers qui préservent les filtrations de Moy-Prasad. Nous démontrons que et sont égales s’il n’y a pas de tore deployé dans le centre de la composante connexe de . En général, les deux diffèrent par une translation de si elles sont affines et vérifient une autre conditon faible.
Let be a unitary group defined over a non-Archimedean local field of odd residue characteristic and let be the centralizer of a semisimple rational Lie algebra element of We prove that the Bruhat-Tits building of can be affinely and -equivariantly embedded in the Bruhat-Tits building of so that the Moy-Prasad filtrations are preserved. The latter property forces uniqueness in the following way. Let and be maps from to which preserve the Moy–Prasad filtrations. We prove that if there is no split torus in the center of the connected component of then and are equal, and in general if both maps are affine and satisfy a mild equivariance condition they differ up to a translation of
@article{AIF_2013__63_2_515_0, author = {Skodlerack, Daniel}, title = {The centralizer of a classical group and Bruhat-Tits buildings}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {515-546}, doi = {10.5802/aif.2768}, zbl = {06193039}, mrnumber = {3112840}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_2_515_0} }
Skodlerack, Daniel. The centralizer of a classical group and Bruhat-Tits buildings. Annales de l'Institut Fourier, Tome 63 (2013) pp. 515-546. doi : 10.5802/aif.2768. http://gdmltest.u-ga.fr/item/AIF_2013__63_2_515_0/
[1] Linear algebraic groups, Springer-Verlag, New York, Grad. Texts in Math., Tome 126 (1991) (2nd enl. ed.) | MR 1102012 | Zbl 0726.20030
[2] Building of and centralizers, Transform. Groups, Tome 7 (2002) no. 1, pp. 15-50 | Article | MR 1888474 | Zbl 1001.22016
[3] Smooth representations of GL(m,D), V: Endo-classes (2010) (arXiv:1004.5032v1) | Zbl pre06039003
[4] Buildings of classical groups and centralizers of Lie algebra elements, J. Lie Theory, Tome 19 (2009) no. 1, pp. 55-78 | MR 2531872 | Zbl 1165.22018
[5] Buildings, Springer-Verlag, New York (1989) | MR 969123 | Zbl 0922.20034
[6] Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. (1984) no. 60, pp. 197-376 | Numdam | MR 756316 | Zbl 0597.14041
[7] Schémas en groupes et immeubles des groupes classiques sur un corps local, Bull. Soc. Math. France, Tome 112 (1984) no. 2, pp. 259-301 | Numdam | MR 788969 | Zbl 0565.14028
[8] Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires, Bull. Soc. Math. France, Tome 115 (1987) no. 2, pp. 141-195 | Numdam | MR 919421 | Zbl 0636.20027
[9] The admissible dual of via compact open subgroups, Princeton Univ. Press, Princeton, NJ, Ann. of Math. Studies, Tome 129 (1993) | MR 1204652 | Zbl 0787.22016
[10] The book of involutions, Amer. Math. Soc., Providence, RI, AMS Colloquium Publications, Tome 44 (1998) | MR 1632779 | Zbl 0955.16001
[11] Some functorial properties of the Bruhat-Tits building, J. Reine Angew. Math., Tome 518 (2000), pp. 213-241 | MR 1739403 | Zbl 0937.20026
[12] Comparison of lattice filtrations and Moy-Prasad filtrations for classical groups, J. Lie Theory, Tome 19 (2009) no. 1, pp. 29-54 | MR 2532460 | Zbl 1178.20044
[13] Unrefined minimal -types for -adic groups, Invent. Math., Tome 116 (1994) no. 1-3, pp. 393-408 | Article | MR 1253198 | Zbl 0804.22008
[14] Algebraic groups and number theory, Acad. press, Inc., BOSTON, Pure and Appl. Math., Tome 139 (1994) (Transl. from the 1991 Russ. orig. by R. Rowen) | MR 1278263 | Zbl 0841.20046
[15] On finite group actions on reductive groups and buildings, Invent. Math., Tome 147 (2002) no. 3, pp. 545-560 | Article | MR 1893005 | Zbl 1020.22003
[16] Quadratic and Hermitian Forms, Springer-Verlag, Berlin and Heidelberg (1985) | MR 770063 | Zbl 0584.10010
[17] Représentations lisses de . I. Caractères simples, Bull. Soc. Math. France, Tome 132 (2004) no. 3, pp. 327-396 | Numdam | MR 2081220 | Zbl 1079.22016
[18] Représentations lisses de . II. -extensions, Compos. Math., Tome 141 (2005) no. 6, pp. 1531-1550 | Article | MR 2188448 | Zbl 1082.22011
[19] Représentations lisses de . III. Types simples, Ann. Sci. École Norm. Sup. (4), Tome 38 (2005) no. 6, pp. 951-977 | Numdam | MR 2216835 | Zbl 1106.22014
[20] Représentations lisses de . IV. Représentations supercuspidales, J. Inst. Math. Jussieu, Tome 7 (2008) no. 3, pp. 527-574 | Article | MR 2427423 | Zbl 1140.22014
[21] Smooth Representations of VI: Semisimple Types (2011) (Int. Math. Res. Not.)
[22] Semisimple characters for p-adic classical groups, Duke Math. J., Tome 127 (2005) no. 1, pp. 123-173 | Article | MR 2126498 | Zbl 1063.22018
[23] Adeles and algebraic groups, Birkhäuser Boston, Mass., Prog. in Math., Tome 23 (1982) | MR 670072 | Zbl 0493.14028