Nous donnons une définition géométrique des formes surconvergentes de poids -adique quelconque. Ceci nous permet d’obtenir la théorie des familles -adiques de formes modulaires de Coleman et de reconstruire la courbe de Hecke de Coleman et Mazur sans utiliser la famille d’Eisenstein.
We give a geometric definition of overconvergent modular forms of any -adic weight. As an application, we reprove Coleman’s theory of -adic families of modular forms and reconstruct the eigencurve of Coleman and Mazur without using the Eisenstein family.
@article{AIF_2013__63_1_219_0, author = {Pilloni, Vincent}, title = {Overconvergent modular forms}, journal = {Annales de l'Institut Fourier}, volume = {63}, year = {2013}, pages = {219-239}, doi = {10.5802/aif.2759}, zbl = {06177080}, mrnumber = {3097946}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2013__63_1_219_0} }
Pilloni, Vincent. Overconvergent modular forms. Annales de l'Institut Fourier, Tome 63 (2013) pp. 219-239. doi : 10.5802/aif.2759. http://gdmltest.u-ga.fr/item/AIF_2013__63_1_219_0/
[1] Geometric overconvergent modular forms (prépublication)
[2] Cohomologie rigide et cohomologie rigide à support propre (1996) (Première partie, prépublication 96–03, disponible sur perso.univ-rennes1.fr/pierre.berthelot/)
[3] Eigenvarieties, -functions and Galois representations, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 320 (2007), pp. 59-120 | Article | MR 2367390 | Zbl 1230.11054
[4] Companion forms and weight one forms, Ann. of Math. (2), Tome 149 (1999) no. 3, pp. 905-919 | Article | MR 1709306 | Zbl 0965.11019
[5] -adic Banach spaces and families of modular forms, Invent. Math., Tome 127 (1997) no. 3, pp. 417-479 | Article | MR 1431135 | Zbl 0918.11026
[6] The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 254 (1998), pp. 1-113 | Article | MR 1696469 | Zbl 0932.11030
[7] Application de Hodge-Tate duale d’un groupe de Lubin-Tate, immeuble de Bruhat-Tits du groupe linéaire et filtrations de ramification, Duke Math. J., Tome 140 (2007) no. 3, pp. 499-590 | Article | MR 2362243 | Zbl 1136.14013
[8] La filtration de Harder-Narasimhan des schémas en groupes finis et plats, J. Reine Angew. Math., Tome 645 (2010), pp. 1-39 | Article | MR 2673421 | Zbl 1199.14015
[9] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4), Tome 19 (1986) no. 2, pp. 231-273 | Numdam | MR 868300 | Zbl 0607.10022
[10] -adic automorphic forms on reductive groups, Astérisque (2005) no. 298, pp. 147-254 (Automorphic forms. I) | MR 2141703 | Zbl 1122.11026
[11] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin (1973), p. 69-190. Lecture Notes in Mathematics, Vol. 350 | MR 447119 | Zbl 0271.10033
[12] Universal extensions and one dimensional crystalline cohomology, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 370 (1974) | MR 374150 | Zbl 0301.14016
[13] Group schemes of prime order, Ann. Sci. École Norm. Sup. (4), Tome 3 (1970), pp. 1-21 | Numdam | MR 265368 | Zbl 0195.50801