Nous étendons nos résultats récents sur la propagation d’estimations de résolvantes semi-classiques à travers des ensembles captifs sous des bornes a priori de type polynomial. Précédemment, nous obtenions des estimations non-captives dans des situations captives quand la résolvante est contrôlée par au dessus et en dessous par des fonctions cutoff dont le support microlocal est situé loin de l’ensemble captif : (version microlocale d’un résultat de Burq et Cardoso-Vodev). Nous considérons maintenant le cas où l’une des deux fonctions cutoff, , est à support dans l’ensemble captif, obtenant lorsque la borne a priori est .
We extend our recent results on propagation of semiclassical resolvent estimates through trapped sets when a priori polynomial resolvent bounds hold. Previously we obtained non-trapping estimates in trapping situations when the resolvent was sandwiched between cutoffs microlocally supported away from the trapping: , a microlocal version of a result of Burq and Cardoso-Vodev. We now allow one of the two cutoffs, , to be supported at the trapped set, giving when the a priori bound is .
@article{AIF_2012__62_6_2379_0, author = {Datchev, Kiril and Vasy, Andr\'as}, title = {Semiclassical resolvent estimates at~trapped sets}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {2379-2384}, doi = {10.5802/aif.2752}, zbl = {1271.58015}, mrnumber = {3060761}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2379_0} }
Datchev, Kiril; Vasy, András. Semiclassical resolvent estimates at trapped sets. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2379-2384. doi : 10.5802/aif.2752. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2379_0/
[1] Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., Tome 124 (2002) no. 4, pp. 677-755 | MR 1914456 | Zbl 1013.35019
[2] Geometric control in the presence of a black box, J. Amer. Math. Soc., Tome 17:2 (2004) no. 4, pp. 443-471 | MR 2051618 | Zbl 1050.35058
[3] Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré, Tome 3 (2002) no. 4, pp. 673-691 | MR 1933365 | Zbl 1021.58016
[4] Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Tome 246 (2007) no. 2, pp. 145-195 (Corrigendum, J. Funct. Anal., 258 (2010), no. 3 p. 1060-1065) | MR 2321040 | Zbl 1119.58018
[5] From resolvent estimates to damped waves (To appear in J. Anal. Math. Preprint available at arXiv:1206.1565, 2012)
[6] Propagation through trapped sets and semiclassical resolvent estimates, Annales de l’Institut Fourier, Tome 62.6 (2012), pp. 2345-2375
[7] The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer Verlag (1994) | MR 1313500 | Zbl 0601.35001