Nous investiguons la convergence/divergence de la forme normale d’une singularité d’un champ de vecteurs de avec une partie linéaire nilpotente. Nous prouvons que chaque champ de vecteurs Gevrey- avec une partie linéaire nilpotente peut être réduit à une forme normale Gevrey- en utilisant une transformation Gevrey-. Nous prouvons également que si on arrête la procédure de normalisation à un certain ordre optimal, le reste de la forme normale devient exponentiellement petit.
We explore the convergence/divergence of the normal form for a singularity of a vector field on with nilpotent linear part. We show that a Gevrey- vector field with a nilpotent linear part can be reduced to a normal form of Gevrey- type with the use of a Gevrey- transformation. We also give a proof of the existence of an optimal order to stop the normal form procedure. If one stops the normal form procedure at this order, the remainder becomes exponentially small.
@article{AIF_2012__62_6_2211_0, author = {Bonckaert, Patrick and Verstringe, Freek}, title = {Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {2211-2225}, doi = {10.5802/aif.2747}, zbl = {1278.37044}, mrnumber = {3060756}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2211_0} }
Bonckaert, Patrick; Verstringe, Freek. Normal forms with exponentially small remainder and Gevrey normalization for vector fields with a nilpotent linear part. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2211-2225. doi : 10.5802/aif.2747. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2211_0/
[1] Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. (6), Tome 13 (2004) no. 4, pp. 493-513 http://afst.cedram.org/item?id=AFST_2004_6_13_4_493_0 | Numdam | MR 2116814 | Zbl 1169.34339
[2] Nilpotent normal forms and representation theory of , Multiparameter bifurcation theory (Arcata, Calif., 1985), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 56 (1986), pp. 31-51 | MR 855083 | Zbl 0604.58005
[3] A simple global characterization for normal forms of singular vector fields, Phys. D, Tome 29 (1987) no. 1-2, pp. 95-127 | Article | MR 923885 | Zbl 0633.58020
[4] Introduction to Lie algebras and representation theory, Springer-Verlag, New York (1972) (Graduate Texts in Mathematics, Vol. 9) | MR 323842 | Zbl 0447.17001
[5] Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, Tome 212 (2005) no. 1, pp. 1-61 | Article | MR 2130546 | Zbl 1072.34039
[6] Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation. (Formes normales des perturbations analytiques des champs de vecteurs quasi-homogènes: rigidité, ensembles d’invariants analytiques et approximation exponentiellement petite.), Ann. Sci. Éc. Norm. Supér. (2010), pp. 659-718 | Numdam | MR 2722512 | Zbl 1202.37071
[7] A preparation theorem for codimension-one foliations, Ann. of Math. (2), Tome 163 (2006) no. 2, pp. 709-722 | Article | MR 2199230 | Zbl 1103.32018
[8] Stanley decomposition for coupled Takens-Bogdanov systems, J. Nonlinear Math. Phys., Tome 17 (2010) no. 1, pp. 69-85 | Article | MR 2647461 | Zbl 1194.34066
[9] Normal forms and unfoldings for local dynamical systems, Springer-Verlag, New York, Springer Monographs in Mathematics (2003) | MR 1941477 | Zbl 1014.37001
[10] The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, Tome 179 (2002) no. 2, pp. 479-537 | Article | MR 1885678 | Zbl 1005.34034
[11] Multidimensional formal Takens normal form, Bull. Belg. Math. Soc. Simon Stevin, Tome 15 (2008) no. 5, Dynamics in perturbations, pp. 927-934 http://projecteuclid.org/getRecord?id=euclid.bbms/1228486416 | MR 2484141 | Zbl 1190.34046
[12] Singularities of vector fields, Inst. Hautes Études Sci. Publ. Math. (1974) no. 43, pp. 47-100 | Numdam | MR 339292 | Zbl 0279.58009